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I. INTRODUCTION

A paper, presented in 1960 by R. E. Kalwan (18) at the First Inter-
national Congress on Automatic Control in Moscow, U. S. S. R., suggested
the use of vectors and matrices to analyze control systems and introduced
the concepts of controllability and observapbility. This paper was among
the first of many papers in a new area of system theory called state-
variable theory. This theory yilelds a more fundamenbtal understanding of
the system than the transfer function approach previously used.

With this theory a group of new terms have been introduced. The
first of these terms, state of a dynamic systvem is defined as the smallest
collection of numbers which must be specified at a present time, to’ in
order to be able to predict the future behavior of the system, provided
the system's mathematical formulation and future inputs are known.

The state-variables of a dynamic system are the elements of the states

as the elements vary with time. These state-variables represent the physi-
cal quantities or a linear combination of the physical gquantities internal
to the system.

The state-variable formulation can be compared to the transfer func-
tion approaci which deals entirely with input and output quantities of the’
;ystem. A large system may contain some modes of operation over which thne
input may have no control or which may never appear in the outpubt. These
modes of operation would never appear in the transfer function approach.
The concepts of controllability and observability deal with these "missing

modes of operation' and will be discussed later.



State-variable theory gives a much more complete mathematical descrip-
tion of a dynamic system and is able to accommodate systems with multi-
inputs and multi-outputs much better than the transfer Tunction approach.
In addition, the transfer function approach can be said to be a subset of
the state-variable theory, because the transfer function can always be
derived from the state-variable description of the system, but the reverse
is not always true. DeRusso, Roy, and Close (11) states, "From a mathe-
matical viewpoint, the state-variable approach is the use of matrix and
vector methods to handle the large number of variables which enter into
such problems. As such, these are not new methods, but rather they are
the rediscovery of existing mathematical techniques. They aid considerably
in the solutign of linear multivariable prcblems. More important, however,
the state-variable approach aids conceptual thinking about these
problems es-."

Since this thesis is concerned with linear dynamic systems, all the
following discussion will be restricted to the linear dynamic systems.

A. State-Variable Formulation

The mathematical formulation of a linear dynamic system in state-

variable theory is forced to fit the following two matrix equations.

X = Ax + Bv (1)
y = Cx (2)
where
x =n x 1 column vector of the state-variables.

X =n x 1 column vector of the time derivatives of the state

variables,

n x n matrix giving the relation between x and X.

>
I



v = p x 1 column vector of the inputs variables to the system.
B =n x p matrix coupling the inputs variables to the system.
¥y = m x 1 column vector of the output variables of the system.
C =mx n matrix coupling the state-variables to the output
variables.
If at some time, t_, the state of the system, x(to), is known, these
matrix equations can be solved to give the following equation.

—_—

t
x(t) = ot &) x()) + [* (b, 7) B(x) v(r) ar (3)

t
o

The matrix, @(tl, to), is called the transition matrix. It is the
solution of Equation 1 when the input vector, v, is zero. As can be seen
in Equation 3, when the input vector, v{t), is zero, the transition matrix
would relate the state of the system at time, to’ to the state of the
system at time, tl. More information on state-variable theory can be
found in DeRusso, Roy, and Close (11), or Zadeh and Desoer (33), or many
other books or papers written about the subject. ‘
B. Observability and Controllability

The definition for observability given in a paper by Kalman (18) was
later modified by Gilbert (13) and accepted by Kalman (17). The following
definitions found in Zadeh and Descer (33) agree with Gilbert's definition

and are fairly well accepted.

Controllability

A system is said to be contrcllable if and only if for any state,
there is an input which will reduce the state to zero in a finite time.
If all states are controllable, the system is said to be "completely

controllable”.



Observability

A system is said to be observable if and only if in some finite time
after to with the knowledge cof the state-variable description of the
system and with zero inputs, the initial state at time, to’ can be deter-
mined by observing the output variables.

The preceding definition for controllability and observability gives
good physical insight into the concept of each, but does not aid much in
determining the controllability or observability of a system from the
mathematical poiuvt of view. For this reason, some authors prefer %o define
controllability and observability on the basis of a @ matrix. Brown (7),
in a paper presented at the National Electronics Conference in 1966, has
a very good discussion showing that the Q matrix criterion is derived from
the basic definition of observability given above for both the time-
invariant and time variable systems.

For the time-invariant system, the Q matrix is formed as shown below
for both controllability and observability.

Controllability Q matrix:

Q = [B, AB, A°B, «.. aA"71B] ()

Observability Q matrix:

a=[ch, 4%, H? ¢T, oor (ah) T (5)
The superscript T means the transpose of the matrix and n is the order of
the A matrix. The criterion for a controllable or observable system is
that there be n independent columns in the Q matrix. This criterion can
also be stated as the rank of the Q matrix must be equal to n. For the

time-invariant system, Chen, Descer, and Niederlinski (9) has shwon that
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the complete Q matrix may not be needed to determine its rank. They
determine the rank for the B or CT part of the matrix first, i.e., the
first p or m columns where p refers to the controllability Q matrix and
m refers to the observability Q matrix. The symbols p and m are defined
in Equations 1 and 2 and are respectively the number of inputs and out-
puts of the system. They then add the next p or m columns to the part
already checked and determine its rank. They keep adding p or m columns
until the ranks of two successive matrices are equal. The last rank
determined is the rank of the complete Q matrix.

For time variable systems, i1.e., where the matrices A, B, or C may
be functions of time, the Q matrix formulation is more complicated.
This development can be found in at least two places in the literature.
The paper by Brown (7) has one development. Silverman and Meadows (31)
gives another development, Only the results of the development are
given here. The notation used here is somewhat similar to that used by
Silverman and Meadows (31). A sequence of matrices, P15 Py *o* Bs
e+« P 1is defined where n is the order of the A matrix as defined in
Equations 1 and 2, The sequence is defined as shown by the se* of
Equations 6 and 7.

Controllability: Pl =B



H

Observability: Pl C

_,T a :
Pe=4& Py Yag P (7)

The Q matrix is defined as shown in Equation 8.

Q=(P1>P "'p Pk’ ot Pn] (8)

The criterion on the Q‘matrix is the same here as before, namely, that
there be n independent columns for a controllable or observable system.
It should be noted that this definition and criterion will also work for
the time-invariant system.

The paper by Silverman and Meadows (31) also shows that any Q matrix
composed of more than n matrices from the sequence will have the same rank
as a Q matrix composed of only n matrices of the seguence.

Another criterion for controllability and obgervability has been
developed using tne transition matrix instead of the A matrix. Since this
thesis is based on the Q matrix no further discussion on the criterion will
be given here; however, more information may be found in a paper by
Kreindler and Sarachik (19).

Since observability is the main subJject to be considered in this

thesis, the rest of the discussion will concentrate on observability with

controllavbility being left to follow by analogy.



II. NOT JUST OBSERVABLE, BUT HOW OBSERVABLE

All the criteria presently available for observabilibty give a
"yes-no' answer with no indication as to how close to the dividing line
the system may be. Brown (7, 8) has opened ﬁhe issue of "How Observable?"
In the development of the observability Q matrix, Brown points out that
this matrix relates the state-variables to the output variables and tne
derivatives of the output variables. It is done in the following manner
for the time-invariant system. Starting with Equations 1 and 2, assuming
the input to be zero, Equation 2 is differentiated and Bquation 1 is

substituted as shown below.

y(t,) = Cx(s )
jr(to) = c;c(to) = CAx(t)
¥(5,) = Cax(t) = CAgx(to) (9)

n-1 . aan=1
() = A" ()

Equation 2 is differentiated n~1 times because the theorem due to
Silverman and Meadows (31) shows that any further differentiation is
superfluous.

The set of equations numbered 9 can be rewritten in the matrix form

shown by Equation 10.



C oy )= (e )

y(t,) | = | ca

¥(s) | = [ea® (x(s)] (10)
Lyn—l(to)J _ _CAn-lJ

Let the column vector on the left of Equation 10 be yd(to). By
inspection the matrix to the right of the equal sign in Equation 10 can be
T
seen to be Q.
The matrix Equation 10 may be rewritten as shown by Equation 1l.

v (6.) = x(t) (1)

o’
}.,J
o)
%2}

<
w0
ct
()
=
-

Brown (6), shows a similar development for the time varia

The results are the same as shown by Equation 7 and Equation 1i.

If the system has only one output, the state, x(to), can be foundi by
inverting the QT matrix. However, the inverse of QT only exists if tne
determinant of QT is nonzero or, in other words, if the rank of the matrix
is equal to its order. If the system has multiple outputs it should ve
possible to pick n linearly independent colurns of the Q nmatrix and invert
the square matrix., However, the criterion that the Q matrix have n
independent column also means that the rank be n. Thus, it is now clear
from where the "yes-no" answer to the observability question came.

Brown pr0poses that the degree of independency of the columns of the
Q matrix is also the degree of observability of the system. For example,
if n columns of the Q matrix are orthogonal, the degree of independency

of the columns is as high as possible, and the system will be highly



observable. I a vector can be found which is nearly orthogonal Lo all
the columns of the Q matrix, then the degree of independency of the
columns would be low; likewise the degree of observability for the system
would be low. In this last case difficulty would be encountered in
solving Equation 11l. A small meacurement error would be reflected as a
large error in the solution of tThe unknowns.

Furthermore, the direction of the "nearly orthogonal vector" indi-
cates the direction of greatest error in the solution of the state-
variables. If, for example, a three state-variable system had the "nearly
orthogonal vector'" pointed half way between state variable number 2 and 3,
they would have the greatest error while state-variable number 1 would have
the smallest error, if all the observation errors were equal. These
equations are known as ill-conditioned and further discussion can be found
in a paper by Gavurin (12).

Since the "most orthogonal' vector conveys considerable information,
the next problem to be discussed is the evaluation of it. The development
shown here is due to Brown (6) in his unpublished notes. First, the
columns vectors of the Q matrix must be normalized because we are more
interested in the "angles" between the columns vectors and "most
orthogonal" vector rather than the "length'" of the vectors. The Q matrix
with its columns normalized will be designated as QN and its columns as
W

l’

is a scalar as shown by Equation 12.

L= (wlTu)2 + (szuF Foaee (wmnTu)2 (12)

W5 w3, Wi Brown forms an observability function called L which
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The symbol, u, is the "most orthogonal' vector with the constraint that it
be of unit length.

Equation 12 may be rewritten as shown in Iquation 13.
m

T T T, T
L= uww ™+, oWl (13)

By expansion of the QNQNT matrix, it can be shown that the QNQNT matrix
is the quantity inside the brackets of Eguation 13. Eguation 13 may be
rewritten as Equation 1h.

L = u'(q@;’) u (1)
This problem is a maxima-minima type problem‘very suitable ©o tThe method
of Lagrangian multipliers as given in Chapter 4, Section 5 of Widder (32).
In this case the constraint is expressed by Equation 15 and declares that
the "most orthogonal" vector must be of unit length.
wu =1 (15)
The Lagrangian multiplier formulation is given by Equation 16 where

A, a scalar, i1s the Lagrangian multiplier.
d T T T - .
3 [0 (Q@y ) u -2 (wu-l)]=0 (18)
The indicated differentiation is of quadratic form. More details on
it can be found on pages 288-289 in DeRusso, Roy, and Close (11). The
result of the differentiation is given by Equation 17.

(QgQy" - AMu =0 (17)

Tne matrix I is the unit matrix. From Equation 17, 1t is clear that the

" " . T .

most orthogonal’ vector is an eigenvector of the QNQN macrix. To
determine the correct eigenvector, the eigenvecitors can be suvstituted into

Equation 14. The eigenvector which yields the smallest value of L is the
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"most orthogonal' vector. Another way of determining the correct eigen-
vector requires the following development. Rearrange Equation 17 and
: T

premultiply both sides by u”. The result is as shown by Equation 18.

uT(QNQNT)u =wu=A =1 (1.8)
This equavion shows that the observability function is egqual to the

L. T . .

smallest eigenvalue of the QNQN matrix. Therefore, the
vector 1s the eigenvector associated with the smallest eigenvalue.

Since thne smallest eigenvalue is the observability function, its
value gives a measure of the system observability. A small value of the
observability means that one or more elements of a state will nave a
large error associated with it when determined from observations which nas
measurement error. All the eigenvalues velng ecqual means that all the
elements of a state are as observable as they can be.

In order to gain an idea of what the values of the observapility
function mean, a theorem due to Bocher as expressed on page 23k in
DeRusso, Roy, and Close (1L) will be used. The theorem states that the
sun of all the eigenvalues of a matrix is equal to the trace of the matrix.
An expansion of the trace of QNQNT shows that the trace is always egual
to the number of non-zero columns of the Q matrix. Since all the eigen-
values of a 'most observable' system are egual, the value of the observ-
ability function of a "most observable" system is equal to the number of
non-zero columns of the Q matrix divided by n. In the case, wnere there
are no non-zero columns, the value is egqual tc the number of outputs of

the system.
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When +the smallest elgenvalue 1s zero, the system is unobservable. IT
any of the state-variable have a component in the same direction as the
eigenvector associated with the zero eigenvalue, that state variable is
unobservable. All ©the other state variables are ovservable. However, by
the definition of observability given earlier the system is still
unobservable.

The preceding procedure is very useful for a small system, oub waen
systems get larger and more complex, it sometimes becomes necessary to
consider the second or third "most orthogonal' vector. TFor these cases,

the procedure described in the next section should be nelpful.
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III. DEGREES OF OBSERVABILITY PER STATE-VARIABLE

FOR THE SINGLE~OUTPUT OBSERVABLE SYSTLM

For systems which are nearly unobservable, we are interested in
which state variables are most observable and which ones are least
observable. We are interested in finding a figure of merit for each
state-variable which will reflect how observable the state-variable is.
The criterion selected for this thesis i1s based on the increase in error
of the calculated state-variable over the error in the observations.

With Kalman filter theory as explained in Lee (20) the error in the
calculated state variable can be found. However, the work involved is
much greater than the method proposed here; and, the error in each
observation must be known and specified. In the method proposed here, the
error in each observation is assumed to be equal to the error in all tne
other observations in a "pseudo-normalized sense". Taus, the method
presented here yilelds a relatively quick and easy means of gaining some
insight into the degree of observability without going through the entire
Kalman estimation procedure.

In defining the Degree of Observabllity per State-Variable we will

use the reciprocal of the increase in the error of the calculated state-
variable over the observation error. The reciprocal is used so tnat a
small number will result for nearly unobservable state-variables.

The two most common approaches to error analysis 1s the upper-bound

error and the standard-deviation error. The criterion has been developed

for both approaches.,
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Let us develop the criterion for the single-output observable system
first, and consider the multi-output and unobservable systems later.

Referring to matrix Equation 11, we will normalize the rows of the
QT matrix and divide the elements of the yd(to) vector by the length of
the corresponding row vectors of the QT matrix. We will define the
normalized vector as de(to) and the normalized matrix as QNT. The

equation may be written as Equation 19.

Yan(ts) = @ [x(t,)] (19)
The vector de(to) consists of the actual value of the vector and an
error term and can be split into the two vectors, the actual value,
ya(to) and error, e. Equation 19 can then be rewritten as Equation 20.
[y, (5,07 + [e] = @ [x(t,)] ; (20)
Solving Equation 20 by taking the inverse of QNT results in
Equation 21.
7yt 7,1
x(t,) = (ag0) [y (5,)7 + (@)  [e] - (21)
Two items should be noted. First, the matrix QNT is square and
invertible because we are considering only a single output observable
system. Second, the elements of the e vector are not the actual measure-
ment errors of the observations, but are modified by being divided by the
length of the corresponding row vectors of the QT matrix,
Equation 21 shows that the calculabted state of the system is split
into the actual state plus the error of the calculated state. The
equation shows that this error is the linear combinations of the measure-

ments errors.
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Let us consider the upper-bound error first. We will replace the
elements of the e vector with the "modified upper-bound errors" for each
measurement putting the usual plus or minus sign in front of each vector
element. Since we are looking for the upper-bound error on the calculated
value of each state-variable, we must select the signs of the elements in
the e vecbor 1o yield the maximum calculated error. Since the calculated
error is a linear combination of the observation errors, the calculated
error turns out to be the sum of the absolute values of the row coeffi-
cients of (QNT)_l when each coefficilent is multiplied by its respective
observation error. If we let the elements of the e vector be equal, we
see these elements will cancel when the ratio for the degree of observ-
ability is calculated. We are left with a single number which is our
degree of observability per state-variable for the upper-bound error. To
shorten this name we will call it upper-bound observability. To recapitu-
late, the upper-bound observability for a state-variablé is the inverse of
the sum of the absolute values of the coefficients in the corresponding

-1
row in the (QNT) matrix.

To find the corresponding degree of observablility per state-variable
when standard deviation is used as a measure of error, we will refer to a
theorem from statistics found on page 126 of Lindley (21). The theorem
states that the variance of the linear combination of independent random
variables i1s the sum of the coefficients squared multiplied by the
respective variances of each random variable. The standard deviation is
then the square root of the variance. Applying this theorem to our case,

we know that the calculated error is a linear combination of the measure-

ment errors. Therefore, the calculated error is the sum of the
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coelficients squared in the row of the (QNT)_l multiplied by the variance
of each measurement. An expansion of (QNT)'l will show this condition.
Again when the ratio is taken to find the degree of observabllity per
state-variable, we find that, if the variances in the e vector were all
made equal, they would cancel. Therefore, the degree of observability per
state—variable.based on the standard deviation is then the reciprocal of
the square root of the sum of the coefficient squared in the respectively
rows of the (QNT)-l matrix. To shorten the name we will call it standard-
deviation observability.

At this point a simple example will be given to make the preceding
discussion clearer. Consider the following system. (Figure 1).

The state-variable formulation is given by Equations 22 and 23.

X -12 3 Xy 9 01 vy
- | = + (22)
X, 3 b %, 0 lJ Vo
*1
y=1[0 11|, - (23)
o .
L
Step 1: Form the Q matrix as specified by Equation 5.
0
a=1[; 1 (ok)
Step 2: Normalize the columns of the Q matrix.
_ 0 0.6
oy = [ _o.8) (25)
Step 3: TForm the QNQNi matrix.
T .36 - .48 ‘
Wy = Lils  1le] (26)

Step 4: Find the eigenvalues and the corresponding eigenvectors.

(For procedure, see Ralston (28) Chapter 10, pages 487-499.)
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3//10
M= 025 = /0 (27)
-1//10

The observability function is the smallest eigenvalue which has a
value of 0.2. Since there are only two columns in the Q matrix, the sum
of the eigenvalues is two. Since the "most observsble" system would have
both eigenvalues equal to one, we can gain an idea of the observability of
this system by comparing the observability function value of 0.2 to the
value of one. By examining the elgenvector associated with the 0.2 eigen-
value, we see that the state-variable, Xqs is less observable than the
state-variable, Xy This result is very satisfying because X, iy measured
directly while Xy has to be calculated.

Proceeding with the rest of the example.

Step 5: Find the inverse of
L/3 5/3

-1
) - 1 o)

T
(Qy
Step 6: Form the degree of observability per state-variable for each

type of error.
Upper-bound observability:

For state variable number 1

I

1
75T+ 5731 =37 %3

For state variable number 2

1

HEERCE

el
I
’_J
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Standard-deviation obgervability:

Tor state variable number 1

1 1 _
- - 0.14585
(1/3)2 + (5/3)2 °-13%

TFor state variable nwnber 2

1

@F - @F T

The upper-bound observability for X, says that the upper-pound error

-

for xl(to) will be tThree times the upper-bound error on the measurements of
y(to) and y(to) if the modified upper-bound error for each measurement
were equal.

fhe upper-bound error for xg(to) will be the same as “ne measuremsnt
upper-vound error. Again, the result 1s very satisfying because X2(t0>
is measured directly.

By analogy, the standard-deviation observability for xl(to) Shows

that the standard deviation for xl(to) is 2.13k times the standard devia-

3

tion on the measurements. ILikewise, the standard deviation of xz(to) is
the same as the measurement svandard deviation.

This simple example does not snow the advantage of the degree of
observability per state-variable because the engineer can essentially gain
all the needed information from the '"most orthogonal" vector. However,
later examples will be given where more than the "most orthogonal' vector

will be helpful.
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IV, DEGREES OF OBSERVABILITY PER STATE-VARIABLE FCR THE GENERAL CASE

We have yet To consider the systems with multiple outputs and systems
which are not observable. In the case of the non-oObservable systems, we
are interested in how observable the state-variables are wnich can be
observed. For the multi-output system the Q matrix is not square. In tae

T
preceding discussion, we took tae inverse of the QN matrix; however, for

m
s N . . o T . .
bDoth cases presented above the simple inverse of the Q.. wmatrix cannot be
L

Tound.
The answer 1o the above problem is the generalized inverse (freguently

called peusdo-inverse). E. H. Moore (22) discovered the generalized

inverse in 1920. I% was rediscovered independently by A. Bjerhammar

2\

/>

e)

(3, 4) in 1951 and by R. Penrose (25) in 1955. T. N. E. Greville (15, 1
in papers published ian 1959 and 1960, gives the information about the
history of the generalized inverse.

Only the essential Teatures of the generalized inverse will be given
nere. DBesides the papers already mentioned, furtner information may Dve
obtained by referring to any of the following papers (1, 2, 10, 1k, 23,
ok, 26, 27, 29, and 30).

Consider the matrix Equation 29.

Tz = b | (29)
Let us assume first there are more rows in T than in z but with the rank
of T equal to the number of elements in z. In this case, there is the
possibility of conflicting data in the b vector. The generalized inverse,

. + . e 5 \ ar o
written as T , would yield a vector z, waich would be the best it to the
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data in the least squares sense. The vector zO is specified as given i
Equation 30.
+
Zo =Thp (30)
The best fit in the least squares sense is specified by Equation 31.
| Tz - o |l s]]T2-0 l]; for any z (31)
The double lines denote the commonly defined lengtih of tihe vector.

If the rank of T is less than the number of elements in the vector z
or 1f there are fewer rows in T than elements in z, there are many vectors,
Zz, which will fit Equation 31. Tor this case the generalized inverse will
yield the Z whose length is éhorter than all other z which will fit
Equation 31. This condition is described by Equation 32,

|| z [l = |l z|]|; for a1l 2 (32)

To be more precise mathematical the generalized inverse is
2

frequently defined by Penrose's (25) four equations given by Equations 33,

34, 35, 36.
T =T _ (33)
T+T " T+ ‘ (3k)
T = '
(rr ) = pplt (33)
(i) = 1’7 (34)

The superscript H stands for the hermitian of the matrix and indicates that
the matrix with the superscript is the complex conjugate transpose of the
matrix without the superscript. Penrose has shown that these four

conditions will always define a unique generalized inverse,
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Zadeh and Desocer (33) has an interesting diagram on page 578 of their
book which points out an interesting property of the generalized inverse
concerning its null space, The null space of a matrix is defined as the
set of all vectors z such that the product of the matrix, T, times the
vector z 1s equal to zero. The diagram shows that the generalized inverse
will never transform anything into the null space of the original matrix.

Zadeh and Desoer (33) also presents 'a method of finding the general-
ized inverse of pages 581-582. This was the method used in the computer
program implementing these techniques because part of it is similar to the
work which has to be done to find the observability function and "most
orthogonal vector'.

The method is as follows. Let the matrix S be the hermitian non- -
negative definite matrix defined by Eqguation 35.

s = 71 (35)
Let U be the matrix whose columns are the normalized eigenvectors of § so
that the diagonal matrix D of the eigenvalues results when the similarity
transformation given by Equation 36 is performed.

D = v lsy (36)
In this case, since U is an orthonormal matrix, the hermitian of 1t is
equal to its inverse,

The generalized inverse of the diagonal matrix D is the diagonal
matrix D+ whose diagonal elements are the reciprocal of the corresponding
elements in the D matrix., If a diagonal element in D is zero it 1s left at
zero in the D+ matrix. The generalized inverse of the matrix T is given

by
o = ypty it (37)



22

t should be noted here that for real matrices the hermitvian of the matriz

is equal to the transpose of the matrix.
The last property to note about the generalized inverse i the fact

b oo

that i1t becomes the inverse of the matrix when the matrix is scuare and
non-singular.
With all the vproperties that the generalized inverse possesses, 1t

-

Tits very well into the scheme of things for the multi-output and unob-

3

L
N

N

servable system. We will always take the generalized inverse of @ in

N

place of the inverse and proceed as described in the preceding secvion for

4]
O

calculating the degree of observability per state-variavle.
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V. IMPLEMENTATION ON Tild COMAUTHIR

A computer program was written to calculate the obscrvavility func-
tion, "most orthogonal vector', upper-vound observavility, and stan

deviation observability. Two linear systems for wnicn the resulis were

]

xnown were checked with the criteria developed in this thesis. ne pro-
gram was written in BPS Fortran and runs were made on thne IBM 360 Mocel 50
computer in use at Iowa State in The Fall of 1966.

The Fortran program is given in Appendix A. Thne program 15 gulive

straight Torward and follows the preceding development. Tne program used
(=3 O & I

(5

for the calculation of the eigenvalues and eigenvectors ol QY“- is due ©o
&L A

the method by Jacobi found in Ralston (28). It is a siigiht modification

of the program from the computing system library. The suobroutine Forirar

program is given in Appendix A. One of thne disadavantages oi tnis metnod

is tnat the zero eigenvalues do not come out to be identicalily zero ouvb
are left at some small number. Thnerefore, a tareshold nas to be calcuiaied

10 determine when the eigenvalue should be zero.

The generalized inverse is calculated as discussed in Chapter IV ol -
this thesis by the method given in Zadeh and Desoer (33). To check on the
accuracy of tnis method, a method of calculating the generalized inverse
given by Rust, Burrus, and Schneeberger (30) was programmed. The method
due to Zadeh and Desoer gave poor acCcuracy until the doudble precision
Teavure of tne computing system was employed. Thg modified Fortran pro-

gram due to Rust, Burrus, and Schrneeberger is. given in Appendix 3.
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Variations of two different systems were used to calculace Cobserv-
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ability funcitions and degrees of observability. The first i
navigation system due to Bona (5). The second is an inertial navigation

system due to Brown (8).
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The A and C matrices of the system due

1. The values of the numbers are presented in Table 3. Tanls system was
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in Computer Output nd 2. ALl eigenvalues of tnae QfQNA Latrix
are presented in Computer Output Number 1. Because of tne large mass of
data, all the other Computer Outputs are abbreviated with only the perti-
nentv data being presented.

Observing Computer Output Number 1 for the reduced 3ona systen, we
see first that 1t is unobservable because of the zero value in the observ-
ability functions. Observing the eilgenvector for the zero eigenvalue, we
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these state-variables.

For stabe-variable number 1, we Tind the value of ooth standard-
deviation observability and upper-bound observabllity to be unity. This
value indicat~s that the error of the calculated state 1s the same as Tae

observation error. The reason for this result can be Tound by examining

the C matrix in Table 1. State-variable number 1 is measured directiy.
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Table 1. The A and C matrix from system due to Bona (5)

e

O

(@]

,.f:‘

o

0 o 0 0 o 0
Q G o] 0 0 o
x
0 0 0 1o 0 0
0 -B- 0 0 0 0
L
0 0 —82 O 0 0
0 0 0 -3 o} 0
3
0 O O 0 0] O
o] 0 0 0 o) 0
0] 0 0 0 0 0

C matrix (2 x 9)

O"W

)




26

o 0 c o0 o0 0o O

0 O 0 0 ¢ 0 ©

A matrix (

]"oo 0O 0 1 0 0

0 O c o 0o 0 1

o 0 ¢c 1 O 0 ©

©o 0 0 0 0 1 0

¢ matrix (6 x 16)

o

o)

0

0]

(@I

0]

0]

O

w
l\O




Table 3. Values uascd in the calculations

Q. = 0.5156 x ;0’4
Q= 0.5156 x 107"
¢ =1.0x 10"
@, =0.12k x 107
5, =0 278 x 1o‘u
3, =0.278 x 107"
33 = 0.278 z 10"”
By = 0.278 x 1o"u
B5 = 0.278 x 107F
gg = 0.278 x 1073
By = 0.278 x 1073
35 = 0.556 x 107>
5, = 0.556 x 1073

, C are Tunctions of time

2 vz

Cux ey’ Tuz’ Cvx’ va

and are defined in Appendix C.
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OB SERVABILITY FUNCTIGAS

.0 C.0 0.11272-02 C.14760-02
C.29790-01 0.37550-01 0.48610 00 C.85C55 01
0.8935D C1
STATE VARIABLE NC. ON LEFT MARGIN
IX SMALLEST EIGENVALUES WITH ASSCCIATEL EIGENVECTCRS

ol Calimmeo G-00103 D2Q01458 D-02975 OLQEIEE
1 C.C C.0 0.C0C02 =0.00005 0.CCC98  0.0C01&C
2 C.0 Col L0l00495 —0.00417  C.13043 -C.i037z
3 —=C.168C6 =0.18532  0.0267¢ =0.03249  0.03180 0.C411l
4 €0 0.0 ~0.12075 =0.56280 =-0.09471  0.72549
5  C.86786 =C.02667 =C.31139  €.C2638 =0.337986 =0.06518
6  C.46753 =C.Cl437 C.58766 =0.05066  0.6388 C.1358
7 C.0 G0 012705  0.72325 =0.17597 C.04%¢4
8§ =—C.CC0l131  0.98221 0.00519 =0.00630 0.00617  0.CC7$7
s cC¢ 0.C ~0.72540 <17543 0.64785  0.13312

DEGREE OF CBSERVASILITY PER STAVE VARIABLE
STANDARC  LPPER  OBSERVED CUTPUT NC. AND PRCPCRTICNAL
DEVIATION BOULND  PART CF THAT VALUE IF PART IS OVER O.l
1.CCCO 1.CCCC { 1, 1.00)
1.CCCO 1.CCCO (2, 1.C0)

1

2

3 NOT OBSERVASBLE

4 C.C554 C.0262 (
5 NOT UBSERVABLE

& NCT OBSERVASBLE

7 C.C512 C.C2C86
8§ NOT OBSERVABLE

S (0.C446 C.01286

4y 0e313{ 59=0.3100{( 6,-0.1230 7, C.l2)

23=0e113( 35 0 11){ 494=0.24)( 5, C.24)

4y 04153{ 55 0.25)

Computer Output No. 2. Bona's full system
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TFor state-variable number 2, we find the value for the standard-
deviation observability to be greater than unity. An examination of vthe
C matrix in Table 1 reveals that this state-variable is also mecasured
directly but the error in the calculated state variable is less than the
measurement error. The calculated error is less because information Irom
more than one observation is used in the calculation of the state variavle
with the result that the upper-bound error observability is much less than
unity. We must remember that the generalized inverse was used to obtaln
these degrees of observabilities and that it optimizes in the least square
sense, In other words, i1t gives us the largest value for the standard-
deviation observability, but not for the upper-bound observabilivy.

State-variable number 4 has a standard-deviation error 6.8 times the
standard-deviation error in the measurement.

Examining the results of the full Bona system reveals that state-
variable number 2 is determined only by the direct measurement on it
instead of a number of measurements as was the case in the reduced Bona
system.

The sixteen state-variable system due to Brown was run witih various
combinations of the output terminals being observed. The combinations of
outputs being observed are listed at the top of each Computer Output
Number 3 through 13.

When outputs number 3 and 4 were observed, special difficuliy was
encountered in the formation of the Q matrix because the C matrix contains
time varying functions. The derivative of each function had to be taken

15 times. The derivatives were formed on the computer by algebraic means
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rather than by numerical techniques. The details of how this was done is
given in Appendix C.

A better feeling for the various criteria for the degrees of observ-
abllity can be obtained by studying the Computer Outputs Number 3 through
13. Since tne Computer Outputs are fairly straightforward, no further
discussion will be given here except to explain how the number of the out-
put is specified.

In the lower right hand part of the Computer Output, the first number
inside the parenthesis ig the number of the system output observed. The
numbers 1 through 6 are the direct observations, the numbers 7 through 12

.

are the observations of the first derivative of the system outputs L

through 6 respectively, and so forth, for the rest of the output numbers.
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CHSERVED OUTPUT NCS.1,2
CBSERVABILITY FUNCTICNS

C.C G C.0C 0.0
C.0 ~C.C 0.10770-07  0.31230-04
Ce42480-C2 0.472C0- C.71980 0O 0.7205L Co
C.3432D0 C1 0.34330 01 C.l184C 02 0.11840 C2
STATE VARIABLE NC. ON LEFT MARGIN
SIX SMALLEST EIGENVALUES WITH ASSUCIATED FEIGEAVECTCRS
Cel L0 0.0____ Qal_ LeQo G20
1 C.C_ 0.CG - —=(C.CC0C17_  C.00C3C  0.41260 =C.7C35¢
2 .0 C.C C.00¢26 C.7C641 ~(C.C0C20 G.0CCLs
3 .0 C.C 0.99889 —=0.0L037  0.00C93 =0.0C157
4 .0 O.U T =0.00017 =0.0CC07 C.40359 G.7C944
5 C.C .0 .0 -G.00000 .G 0.C
& Ca0 C.C G0 " 0.000CC  G.C G.0
7 .0 C.C 0.0 C.0 0.0 0.0
8 T C.C T T C.0 T =C.00000 -0.02938 =0.01829 -0.C0013
g .0 0.0 -C.04155 <-0.01561 0.C01712 .=-G.C2%21
1C c.c 0.C =C.(02238 C.02938 =~(L.CC908 =0.015¢6
11 .0 C.C -C.0CC35 0.00023 0.81619 0.C05%4Y
12 C.0 0.C ©C.00026 ‘.70041 ~3.C0020  0.CC01l6
13 C.0 _0.¢G 0.0 . 06.000CC 0.0 C.O
14 .0 " C.C 0.0 L.U GeC Cc.C
15 C.0C 1.CCCCU 0.0 0.0 G0 C.C
16 1.CCGCO 0.C 0.0 C.0 LU0 Ce
DEGREE OF CoStRVAhILITY PER STATE VARIAEGLE
STads AL JOvi R GBSERVED GUTPUT NUe AND PRUSPURTIGNAL T
NI \II\;; "‘U\'i) PART OF THAT VALUE 1F 92037 1S vk YeuD
1 NOT CESERVABLE
2 NOT CHSERVABLE
3 NCT CBSERVABLE i - ) i o
4 NOT OBSERVABLE
5 NOT CBSERVABLE 77 777 ) )
7 £.029C C.C09C (13,=0.10)(144=0.25)(20, 0.07)(26,-0.C8)
(38, 0.C5)
8 NCT CBSERVABLE ) )
S NOT UBSERVABLE
1C NOT OBSERVARLE 77777 77 i T -
11 NOT OBSERVABLE
12 NUT GBSERVABLE 7 T e
13 NOT COUSERVABLE
14 0.0290 C.CCS1 (13, 0.10)(1l4, 0.25)(20,-0.07)(26, G.08)
_. . 138,-0.C5) .
15 NOT CBSERVABLE '

16 NOT CBSERVABLE

Computer Qutput No. 3.

Brown's system observing output no. 1 and 2
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CBSERVED OULTPUT NCS.5,:6
OBSERVABILITY FUNCTIGNS

Computer Output No. U.

Brown's system observing outputs no. 5 and o

0.C 0.6 0.0 .0
0.0 C.0 _ 0.0 . 0.47720-C3
C.4443D0 CC C-4454D CQ 062530 GO 0.62580 CO
0.3651D 01 .36920 01 0.11240 02 0.1124C €2
STATE VARIABLE NC. GN LEFT MARGIN '
SIX SMALLEST EIGENVALUES WITH ASSGCIATEC EIGENVECTCRS
L0 ___ Ca0o Lol Lol a2l O
1 Ce0C.C . CJ0 0.0 =0.C0C28_ 0.CCULS
2 C.0 C.C 0.0 0.0 0.06C4&7 C.70641
3 C.0 0.0 C.0 0.0 . U.99889 0.CCCes
4 .0 0.0 0.0 0.0 0.0 Ny
5 .0 0.0 0.0 C.0 C.C 0.0
6 C.C T C.C TC.0 0.0 0.0 0.0
7 C.0 . 0.¢ .0 0.0 0.0 .0
8 cC.0 S C.C T 0.0 T el T =0.0000Y =0.02938
g .0 0.C C.C C.C -C.04156 ~0.Cl5806
1 C.0 0.0 T 0.0 0.0 T=0.C2237 0.029%39
11 C.0 0.C Cel .0 -0.000238 C.CCOLS
12 G0 0.C T C.0 0.0 T C.C0047 C.T7C641
13 C.C 0.0 0.0 ~1.00C0C  0.C_ 0.0
14 C.0 0.C - 1.00000 .0 0.0 0.0
15 .0 1.CCCO0 C.0 CaG 0.0 C.C
16 1.CCCCO C.C 0.0 C.0 0.0 Cai
DEGREE OF CBSERVABILITY PER STATE VARIASBLC
STANGAAD ST u“sgAvc; JUTPUT Nde aaD PRUPG=G IGIAL
VEVIATION ESRIR A IS PART OF THAT VALUS [F PART 15 UVER J.UB
1 NOT OBSERVAGUSLE
2 NOT (OBSERVABLE
3 NOT OBSERVABLE ) -
4 1.CCCO 1.CCCC ( 55 1.C0)
5 1.0001  C.9743 (11, 0.97) T ) )
6 1.C0CC C.9989 [ 6, 1.C0) _ ) L
7 1.0002 C.9542 (124 0.95) h
8 NOT UBSERVASLE
§ NOT CBSERVABLE 7 T o o
1C NOT OBSERVABLE
11 NOT OBSERVABLE o R o
12 NOT OBSERVABRLE
13 NCOT CBSERVABLE 7 - T o -
14 NOT CBSERVABLE
15 NCT OBSERVABLE 7 T B B T T
16 NOT OBSERVABLE -
.
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CBSERVED UUTPUT NGS.14245,6
CBSERVABILITY FUNCTICNS

0.0 C.0 C.C 0.0
0.0 C.$3880-C3  0.25670 00 _ 0.257GC_
0.6443D GC 0. 64450 00 0.93910 00 0.94C60
C.708SD G1 0.7091D 01 0.2307C 02 0.23C7C

STATE VARIABLE NC. ON LEFT MARGIN
CSIX SMALLEST GIGENVALUES WITH

Co_
Ce
Cc2

ASSQCIATEC EIGENVECTORS

Computer Output No. 5.

L0 ___ CaC Q20 .Q.z_(‘_..__._ Qa0 __ D20C0S4A
1 -C.CCCC4  0.CCOI8 0.0 C.0 0.70671_ 0.CC0L0
2 C.T70641 C.CCC40 0.0 0.0 0.C00C4 ~0.C0334
3 -C.CC0&6  £.59889 0.0 0.0 0.00096  0.0222¢
4 .0 0.0 0.0 0.0 C.C -0.0CC02
5 C.0 0.¢C 0.0 0.0 0.0 -0.CC1C3
6 C.0 C.C 0.0 0.0 C.0 - -0.0CCCH4
71 C.0 _0.C 0.0, 0.0 _C.0 G.0C19T
8 =-C.02937 =-0.CCC02 0.0 0.0 ~-0.01585% 000245
S =C.0l581 =0.C4154 0.0 _ 0.0 C.02535 =0.CC271L
1¢ €.02935 =0.02238 0.0 0.0 ~0.00002 0.5556¢8
11 =C.CCCC4  0.CCCLE  C.0 0.0 _0.70671  0.CCLUL
12 C.70641 0.CCC46 0.0 0.0 $.CCCQ4 =-0.03816
13 Ced 0.0 C.0 0.0 €0 0.00119
14 .0 .0 0.0 0.0 C.0 -0.0C€91
15 C.C 0.0 0.0 ~ 1.00C00 0.0 0.0
16 .0 0.C 1.C0000 .0 0.0 0.0
DEGREE OF GdSEQVABIlITY PER STATE VAR;ﬁgEEWM_ L
'\ATHN[ (S PAFEACEE U8 SeRVEL GUTPUT g AND ‘)’U“uxl Lu\”
ova\l:,l SUGED. PART OF THAT VdLQi IF PART IS U¥iER 9.45
1 NOT DBSFRVABLL S
2 NOT OBSERVABLE o e
3 NOT UBSERVABLE
4 1.CCCO0 _ 1.CC00__( 5, l.CC) S
5 1.C067 C.7567 {( 7, 0.G8)(1l, C.75)
6 1.CC0C  C.%977__( 6y 1.C0) ' o
7 1.0052 Co7737 (12, 0.77)
8 NCT CBSERVABLE o B
S NOT OBSERVABLE o '
10 NOT GBSERVABLE o .
11 NCYV OBSERVABLE S o o )
12 NOT CBSERVABLE e S
13 0.5905 C.3018 ( 1, .41)( 7y~0410)(11,-0.29) )
14 0.5856 C.3279 (2, 0.45)( 8,-0.06)(12,-0.32)(18, C.C¢&)
15 NOT CBSERVABLE ) ‘
16 NOT OBSERVABLE

Brown's system observing outputs no. 1, 2, 5 and &
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35

OBSERVARILITY FUNCTICNS
£.29CCD-C5

0.47G00 OC
C.13300 01

acC

0.1133D G2

STATE VARIABLE NC.

1
2
3
4
5
<)
v
8
G

1¢

11
12
13

TP

15

16

C.0CQCC

_ C.C0CCC__-0.CCCO4

C.CCCCC
-C.0C0aC1

Ca.13077

-C.00267

C.69432

~C.01513

~(.COCCO

-C.00026
-C.CGCCa
C.132C7
C.0694G2
€C.0026C

~-¢.Cccol

C.C1473

0.00CCC

NCSelr21344 TINE = 6:10 A.Va

C.29260-05 0.18620 00 0.2644L CO
0.8265D GO G.91890 00 0.97700 CO

T 0.1591D C1 C.39770 C1 0.46090 Cl

C.1l81D 02 0.12560 02 0.13130 02

ON LEFT MARGIN
SIX SMALLEST EIGENVALUES WITH ASSCCIATEC EIGENVECTCRS
£.CC00Q0 218616 Da26441 Q47591 082843
_  C.CO0351__ 0.119C6 _—0.01361 __ 0.03742
20.CCCO0C  =0.00562 =0.00226 =-0.00890 =0.0C975
0.C0COC 0.00319 =-0.C1637 0.59573  0.05838
T 0469434 =0.04217 —=0.09592  0.06593 -0.02478
-0.0152% =-0.00095% =0.4242C =0.00195 =0.02265
.0.13077 -0.02672  0.05361  0.00543 0.C2615
0.C0267 _-0.50189 _=~0.00057 -U.00ldd 0.0238C
—0.C0C13 T 0.01195  0.28635 -0.00266  0.02372
-0.CCCCO C.40096 =0.00904 =-0.04310 =0.03640
C.CCCOL =-0.01170 C.00T3L =0.05769 0.6518U
0.69490 0.04161 0.06864 =—0.0064T 0.02507
-0.13207 C.00183 =0.0%293 =0.00982 =-0.02665
_ C.01485  0.01009 __ 0.83802 0.02267 -=0.04C34
-0.00260 C.75832 =0.019040 0.01719 0.04917
~0.0CC0C 0401271  0.00629  6.00039 =0.CC574
-0.G0CC00 -0.00705 0.0080L -=0.04585 0.04174
No. 6. Brown's system observing outputs no. 1, 2, 3, L

Computer Output

Time = 6:10 AM



DEGREE OF CBSERVABILITY PER STATE

36

1
2
3
4
g -
6
T
8
S

1c

11
12
13

e
1 5 —

e

STANDAN

)

”‘01)

COFVINTION. RaLaD
1.4103 0.5380
1.5574 C.76¢CC
T 0.6916 0.3541
0.0024 C.CCC7
0.1097  C.C378
0.C024 _ C.COCYT
T 0.1097 C.C377
1.2014 C~45C%

TT0.8546  0.3290
0.5093  $.533%
0.C024 C.CCO7

T 0.C024  C.COCT
0.1113 C.C400
0.1113  C.C398
3.3411 ~ 0.8524
3.3105  0.8972

T(15,-0.08) {16,
TT(1G,
TT24-0.050
T 8,=0.310 4

0.07)(21,-0a

(39, .08) (51,

{164

qutKVFu SUTPUT
_PART_DOF. THAT VA
( 3y Ca19)( 6, C.
(75y=0.08)(81,-0.
( 4, 0.56)
{ 1,-0-051)¢
( 1y 0.C6)V0 7,
{ 2,=0.C5)(
« 0.06)¢
U.091 {

2, Gy

{ 3,
{93, C.12)
0.58)
( 1,-0.05)¢

1) (13,
Ldy

( 77"0-3

(15,
0.08) (45,-0
(63,

(40,
(64,

Computer Output No. 6 (Continued)

VALhu

77‘0-
0.30)(13,-0.09)(19,
8,—0- N N PR
0.30)1{14,-0.09)1(2C,
9, 0.
0.06)(81ly=0+1C)(8674~Ce32)

T+—0a
57"00
0.061(19,-C.C7) (31,
0.09)(2C,-0.07) (32,

0.08)(69,~0.
0.C7) (22,0
0.G8) (46,-0.
"0.08)(704-0.

VAR;ABLE

/\I‘\)-
LR
1 (82,

e

1L

50)(671_

261(13,
261 (14,

31){82,

261013,
261 (14,

06 (27,
081Y(T5,

08)(28,
061(52,

08)(764

PRUPURTIONAL
RT_ 1S s VER Held |
G223) (28,2620)
€.23)(93, 0.29)

0.07)(15,=C.06)
0.C7)
0.66)(2C,-0.06)
0.07)
0.11){S4,-C.22)

0.07)(1G,-0.06)
G.06)(2C;-0.06)
G.05)
C.05)
0.08)(33,-0.08)
C.08){57,-0.08)
0.CT)

0.08)(34,-0.08)
0.08){58,-0.08)
o 0y s



OBSERVED OUTPUT

CBSERVABILITY FUNCTIOANS
C.2CC6D-CG7

0.2C073D 0C

1 C.85S2D CC
G.11S3D ¢2

STATE VARIABLE NO.
SIX SMALLEST EIGELNVALUES WITH ASSCCILATED

NalNes

16

11

12
13 -

14
15
16

Computer Output No, 7.

|

~NO W N

£.CC0CQ

___-C 09862 o

-C.24156
C.09862

T C.53213

C.C00G28

~Ce338C5

CaC04T74
C.C00CO
C.CCuaOl

-C.00CCC

C.433C2

-C.58070C

~C.C0028_
T=0.C0474
C-CCGCC

-0.0C00C0

NOS.1’273’4

0.26150-05 O
G.31240 00 0.
C.96240 GO Oa
0.12010 02 0.

Q0.CCCLU
-0.00213
-C.CC534

0.C0214

0.48656
-0.0C97GC

__=0.060985
TT=0.C0066
-0.CC0177

C.48575
_0.0CS545

T £.0095%
-0.C0003

0.51044

0.51607

0.CC066

37

Q2CCCQR3

0. 67983

-0.03488

—0.49858

0.01694
T -0.00023
C.00127

—-0.00031

031394

C.G34C0O_

"T-0.01613

0.00003

-0.0C000

8:00 AM

0.27752

0.03560 "

0.18C15

-0.00C01

GN LEFT MARGIN

TIME = 8:C0 A.VM.
2568L-04 0.25790-C1
4565C 00 0.63410 CO
35610 01 0.36910 01
14620 02 0.1461C €2
EIGENVECTCRS
0.029139 020135 0231241
~0.01486 _~(.00423 _—=0.73339
-0.002206 =0.00457 0.255CC
01191  (©.0l497 -0.CCl&O
~0.0l476 -0.01525 0436512
-0.1724C -0.46362 =-0.0C975
TT=0.02254  0.05387 -0.16213
_=0.53267 __ 0.14347__ 0.00551
0.1795¢ 036169 C.02CCT
0.52202 =0.12365 =0.0C¢&2¢
—0.21273 0.00L80  0.019C4
 0.00931 -0.01C51 -0.35864
TT0.00300 ~0.04528 0.162717
_0.17597 _ 0.74430__ 0. ocazq
0.55158 -0.24202 -0.0C
_ 0.C0802 . 0.01251__ 0. u204u
~0.00865 -(0.00237 0.CC079

Brown's system observing outputs no. 1, 2, 3, b
Time =
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DeGRE. UOF OoS~{WASTLITY PR STALE

VAR 2GL -

STANUARD UopP R OB SERVFL UUTAUT (0. AND PR 07
_\’.'._L_K _Ui‘ ,,{E "J/\<T_ I) LV '-(

L DEVIATION  30UdD __ PART_SE THAT euS
I 0.C0l4 C.CCC4 ( 8, 0.07)(13, 0.08)(14, C.23)(26, 0.07)
2 0.0006 _ €.0002 ( 8, Go07){13, C.08)(l4y 0.23)(26, C.CT7)
3770.C014 Ce0004 ( 8y=Ca07)(134=0.08)(14,-0.23)(26,=0C7}

4 0.0003 __ 0.C00L_ [ 8,=0.07)(13,=0.07)(14,-0.22)(26,~C.07)
5 0.1056  €.0324 ( 1, 0.G5)( 7, 0.25)(13,=009)(14,=009)

(19, 0.06)

6 0.C004  C.CCOL (13, 0.07)(14, 0.231(20,=0.06) (264

(38,~-0.05)

7 0.0291 C.C033 {13,-0.08){14,=0.27)(20, 0.07)(264~0.08)
o o 138, €.C6)(50,~0.05)
8 0.6575 Ca2C8S ( Sy 0.16)(15,-0.19)(16, 0.18) '
§_ 0.3031 0.0685 { 94-0.10)(15,=0.22)(16, 0.19)
1C 05807 C.1848 (10, C.20)1(15, Cuel5)(16,=0.17)
11 0.C003_ C.CGO01 { 7y-0.05)( 8,-0.07){13,-0.07)(14,-C.22)
( Z 6 ] —U L 7 )
12 0.C002  C.CCCL__ (13, 0.07)(l4, 0.23)(204=0.C51(264 0.C7)
13 0.1071  Ce0339 ( 7,-0.26)1{13, 0.10)(14, C.09)(15,~C.06&)
14  0.0292 0.C0S95 (13, 0.08)(l4, 0.27)(20,~0.07)(26, C.C8)
(384-0.GC6)(5Cy 0.05)
15 3.6563 C.9166 (21,~-0.07)(27, 0.07)(33,-0.C7) (39, 0.07)
(45,=0.C7) (51, 0.07)(57,=C.C7)(63, C.07)
o ) (69,=0.07)(75, 0.07)(81,4-0.071(87, C.C7)
o (93,-0.07) T ey e o
16 3.6422 C.9185 (224-0.06)(28, 0.07)(34,-0.C7)(4C, C.CT)
{46,-0.C7)V (52, Co07)Y(58,-C.07)(64, C.07)
(70,-0.07) (76, 0.07)(82,-0.07) (&8, 0.07)

Computer Output No. 7 (Continued)

G ‘(, YAL
-

C.07)

(94,-0.07) 7
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OBSERVED OQUTPUT NCS.1:2+3,4
CBSERVABILITY
0.11220-07
0.22910 0C_

T0.1006D 01

0.1168D0 02

STATE VARIABLE NC.

1
2
3
4
5
6
7
-

9

16

11

12

13
14
15
16

£200CC0
C.148688

C.12156

~Cal4888

 =C.00169

T =C0e29675

C.58065

—C.00333
—(.CC0CO
-CL.CCCCO

C.0C0C1
—C.14716

C.70284

C.C0169
T .00333
-C.0CCCQ
0.CC0CO

TIME =10:C0 A.M.
c5 T 0.3731D-04 0.34720-C1
co 0.41610 00 0.49220 CO__
oL 0.36840 01 ~ 0.3777C C1
02 0.14490 02  0.1451C €2

MARGIN R S
SIX SMALLEST EIGENVALUES WITH ASSCCIATED EIGENVECTCRS ‘
0.00Q004 02034712 0:22914 021161
-0.51252  —=C.00754__—0.60188_ _-0.50131
~0.41848  0.00941 0.00G71 C.61274
0.51258 0.00963 =0.04712 =-0.C0140
““o.1oo9om“—o.02341”"lo.00914“"0.27126
—0.02482 =0.36312 0.33286 =-0.01%5069
TT0.39380  —=0.019527 =0:05661 -0.33125
-0.04037__=0.35877 _ -0.32597 __ C.0C358
C.00012 0.36305 =C24232 0.01979
-0.00077 34550 0.25433 =-0.01191
TTT0.0C0015  =0.44912°  0.00088 < 0.06551
-0.32104 0.01033 0.02821 =C.27125
~0.02271  0.00515 C.03701  0.33119
—0.02434___0.37736 _ =6.56691  C.025CL
0.03901 0.3777C 0.57479 C.ClG51
0.00001  0.00740 -0.007S5 0.C2511
20.00001  =0.01142 T 0.00607 0.00164

FUNCTIONS

0.27120-

0.3117D

0.12050

£.0CL00
-0.C0082

TZ0.CCCT3 -

0.€0082

0.66791

0.23213

~C.00446

T -0.C0l100

0.CCl1ll
0.66818

T70.23053

 0.01330

0.00437
~0.00002

C.00003

‘0.1Cl607

CN LEFT

Computer Output No. 8., Brown's system observing outputs no. 1, 2, 3, b

Time =

10:00 AM



Lo

1

($44-0.06)

DEGREE OF NLSERVARILLITY Pur STATT VARIARLY
STaniALD YERIE UBoLRVEDL GUTPUT fiGe AND PRUPG:T TUNAL
DEVIATION  #iusd PART JF TiIAT VALUL iF @2 JT__X_s JVIR j?_.vqs_-

"1 0.€C07 C.C0C2 (8, 0.05)(1L3, 0.16)(14, C.153(26, C.C5)
2 0.C009  0.CC02 ( 8y 0.05)(13,y 0.16)(14, o 15)(46, 0.05)
T3770.CC07 CaCGC2 { 84=0.05){(134=0416)(14,-Ca15)(26,-0.05)
4 0.CC04 0.CCO1  ( 7,-0.C8)(13,-0.14)(14,-0.14)(26,-0.05)
5 0.0539 Ce014S ( Ty 0.07){(13+-0.18)(14,-0.15) )
6 0.0002 _ C.CCCO_ (13, 0.16)(l4, 0.16)(20,=-0.05)(26, 0.06)
77 0.0309 CaCO086 (13,-0.15)(14,-0.18)(20y 0.07)(2&,=0.06)
8 0.4558 Cel301 (153=0.22)(16s 0.12)(22,-0.06)(6G3,-C.Cé&)
S 0.47527 Cal368 { 9,=0.14)(15,-0.20)(16, 0.05)(22,-0.08)
(94)“0.06)

107 0.3626 0.10C0  ( 9y 0.05)(10, 0.15)(15, Ca16)(16,-0.10C)

o - (22, 0.06)

11 0.C007 CaCC02 { 77-0.10)(13,=0.12)(14,=-0.13)(26,=0.05)
12 0.0002  C.COCO_ (13, C.16){l4, 0.16)(20,-0.05)(26, 0.06)
13 0.0540  C.0l52 { 7,-0.08)(13, 0.18)(14, 0.15) -
14 0.0310  C.CO087 (13, 0.15)(14, 0.18)(20,-0.C7) (26, 0.06)
15 3.6681 Ce9164 (214-0.07)(274 0.07)(33,-0.C7)(39, C.07)

: (45,~-0.C7) (51, 0.07)(57,-0.C7) (63, 0.C7)
(69,-C.07) (75, O. oz)(ax,-o G7)Y(87, C.06)

- - - . [ —— . . ___,__.,( 93 '_0 07) - - - . - - e e R B
16 3.6003 0.8933 (22,-0.05)(28y 0.07)(34,-04C7)(4Cy 0.GC7)
- - (46,-0.071(525 0.07){58,=0.07)(64, C.07)

T {70,=0.07) (765 0.07)(82,-0.C7)(8&8, 0.07)

Computz: Output No. 8 (Continued)



L1

CBSERVED OUTPUT NCS.1:243,4

OBSERVABILITY FUNCTIOCNS

Ce7771D-08
~0.3061D0 GC
T0.14110 C1
C.12C40 02

STATE VARIABLE NO.

0.28710-05 0.42830-04 C.78C60-Cl
_0.323C0 €O 0.39440 00 0.45940.CO__

C.l4670 Q1 0.42650 01 "0.4362C 01

0.122C0 02 0.13330 02 0.1337C Q2

CN LEFT MARGIN
SIX SMALLEST EIGENVALUES hrtb ASSCCIATED EIGENVECTCRS

C.CCR0U 0.00C 0207804 0.30614 0.223C1
~0.C0182_ =0. 60857 _ 0.00004 _=C.C6177__-0.04CC2
"0.CCCOT =0.03756 =-0.02077 o 71667 =0.3262¢&
-0.00183  0.60870 -0.02106 -0.05166 -0.13073
‘0.70552““"6.30911""“0.02233”” 0.01176” -0.02972
-C.01523 0.00834 0.40881 =C.01538  0.04182
T20.01264  0.20104 0.00763 =0.39845  0.14119
0.00023  =0.05320___ 0.02448 _—0.14502 —0 32433
TT-0.00042 0.00067 ~-0.38548 0.01575 01473
-0.00002_ -0.00028 -0.01386__ 0. o733a,m o 18485
C.CCCb4 =~0.C0125 0.67967 0.10380 =-0.05C06
- 0.70812  =0.29763 -0. 00456,w:o,01261~»“0.03167
-0.01377 0.16593 =-0.00603 0.38717 =0.1€579
0.C1483 =0.0083G _-0.46762 __0.04943 _—u .G79¢C6
~0.CCC23 0.05165 =0.03204 0.35932 0.82167
-0.C000L  0.00001 =—0.00879 _ 0.0297C -0.01327
0.00002 =0.00005 0.01694 0.C0738 0.01225

- 0.CCCCO
1 C.l6439
2 c.01015
3 -C.16439
T4 T =C.0T7C44
5 =C.00249
6 Ce67742
_7_-C.00L73
8 -C.CCCCO
S =(.0CCCO_
1C C.CCOCO
11 C.09470
12 C.68775
13 €.00249
14 C€.00173
15 =0.C0CCC
16 C.CCO0Q0

Computer OQutput No. 9.

Time =

TIVE =12:10 P.V.

Brown's system observing outputs no. 1, 2, 3, 4
12:10 PM



4o

Computer Output No. 9 (Continued)

DLECREe Uk OBSERVALILITY PUR STATE VARIAGLL
STANDARD uie CODSERVED L‘;Uum HWhia AND PROPGRT TONAL
D"VXA‘I n\ AU ; n\r “F THAT /\ k-l Lr )\I\r 1S UWER O.Ub

1T 0.€005 C.CC02 ( 7y 0.08)(13, 0.25)1(25, 0.C7)

2 0.0C087 _ C.0026 { 75 0.08)(13, 0.25)(25, C.C&)

3 0.€005 0002 ( 7,-0.G8)(13;,=0.25)(25,=0.C7)

4 04C011_ C.CCO03_ ( 7,-0.17)(13,-0.18) S

"5 T0.0337  C.0113 (13,-0.29)(14+=0.06)(19, 0.C5)(2C, G.C5)

o  (25,=0.08)(37, 0.05)(49+=C.05) )

6 0.0001 C.CCCC (7, 0.08)(13, 0.2531 (14, 0.C5)(2C,-0.05)

el .. __t25, C.O0T) - L

7 0.0470 C.Cl18 ( 7,=0.06)( 6y 0.08)(13,-0418)(14,-C.06)

L S {20,y 0.06)(25,-0.06) o -

8 0.6688  C.1760 (104=0.13)(154-0.G9)(82, 0.C8)(87,-C.08)

o 1934-0.07)(94,-0.13) S

S 1.5235 Ca4372 (9, =0.17)1(16,~0.08)(814-0.G6)(87,-0.05)

- . (88,=0.09)(93, 0.131(94,-0.1C)

10 0.3791 Ce1255 (10, 0.28)(15, 0.07)(22,; 0.C5)(€2,-C.07)

(87, 0.05)1(94, 0.10) S

11 0.C009 CeCO03 (13, 04263 {14y 0.05)(19,~0.C5)(2C+=0.L5)

o (25, 0.07)(37,~0.05)(49, 0.05)

12 0.CCO01 0.CC00 (7, 0.08) (13, 0.25)(14, 0.05)(2C,~C.05)

o (25, 0.CT) o - ‘

13 0.0337 C.0114 (13, 0.29)(14, 0.06)(19,-0.05)(2C,-0.06)

- B (25, 0.08)(37,~0.C6)(49, 0.05) )

14 0.0471  C.Q12C { 7, 0.06)( 8,~0.C8)(13, Cal8)(14, C.06)

o _ (204-0.06) (25, 0.06)

15 3.5042 08722 (213-0.C7)(27y 0.07)(33,-0.C7) (3%, C.07)

B o _ (454=0.07)(51y 0.07)(573=0.07) (63, 0.07)

T (694=0.07)(75; 0.C7)(81,-0.06) o

16 3.4429 - 0.8576  (22,-0.C6) (28, 0.07)(34,-0.07)(4C, 0.C7)

T T T (46 4-0.07)V (52, 0.07)(58,~C.07) (64, C.07)
(70+=0.07)(76, 0.08)1(82,~-0.08)



43

UBSERVED OUTPUT WNUS<192,344+5,6 TINME = 6:10 AV,
OBSERVABILITY FUNCTIONS
0.34680 CC €.3592D 00 0.40720 0C 0.4356L CO
1 0.4763D 0C 0.82860 €0 0.12%40 01 0.13300 C1__
0.1743D0 01 0.21C6D 01 0.75270 01 0.75920 C1
C.1154D 02 C.11920 ¢2 0.23630 02 0.24GC70 C2
STATE VARIABLE NC. ON LEFT MARGIN
______ SIX SMALLEST EICENVALUES WITH ASSCCIATEC EIGENVECTORS
C£.34682 0.35824 Q2407111 0243565 0267628 082858
1 €.06922 _ 0.15323 __ 0.05939 _ G.08495 _=-0.00270___ 0.01l431
2 C.00864 =0.02328 0.15421 =0.052061 =-0.00192 0.C0649
3 -C.02117 -0.02512 _=-0.04C53 _ -0.01118 0.69460  0.05912
4 C.140C0 027062  0.17285 0.41851 0.02961 =-0.C1865
5 =-C.06534 =0.20581 _ 0.02526 _ C.11l1l7 =-0.C0C44 -0.C0472
6 C.04144 =0.09C33 0.51846 =0.18456 0.02072 0.03194
7 —C.28415 _ 0.09564_ _ 0.04376 _ 0.00462 _-0.00101___ 0.008329
8 C.06473 0.167CL C.00628 ~=0.09630 =-0.00C01L  0.C0&l4
S C.256C0 =-0.1C420 =-0.06451 =-0.01859 -0.04463 -C.014G4
10 -C.009Cé6 001752 =-C.01555 ($.01349 =-0.05812 0.59614
11 C.26197  C.47583 _ 0.25394  C.55161  0.03228 -C.00365
12 C.07153 -0.15&86 0.75553 ~0.23914 0.02237 C.00616
13 €.20340 0467199 =-0.09024 _—0.62553 _0.01413_ -0.00839
14 CeB83867 =0.3163C =-0.14602 =0.04339 0.01655 0.02139
15 C.0C767 =-0.00376 =0.00095 =-0.0097& U«COC1ll =0.CU425
16 =0.CC054 0.01C74 0.00432 0.00382 =-0.04535 0.04C45
DEGREE OF OBSERVABILITY PER STATE VARIABLE
STANDARD UPPEK ORSERVEL UUTPUT NU. AN PRUPURT TONAN
_ DEVIATIGN _ B0UMD _ PART _UF_ToAT VALLE 1F PART 1S LVER JeUd
I 1.4540 Ce45C4 { 3y 0.15)( 95 0.06)(11,-0.06)(82, 0.18)
S  (88,-0.17)(94, 0.07) S
2 1.5578 Ce7402  (75+-0.08)(81,=0+29)(87, 0.22)(G3, 0.29)
3 046917 C.3861 (4, _0.55) o -
T4 1.C001  C.S5406 ( 5y 0.94)
5 1.4520  C.3565__ 4 9,-0.12)(11, 0.17)(S4, 0.08) o
"6 1.0001 C.G477 ( 6y 0.95)
7 1.2838 _ C.3615 (12, 0.22)(87, 0.14)(93,-0.05) }
8 1.5105 0.356C ( Sy 0.16)(11,=0414){82y 0.06)(94,-0.11)
S 1.2460 C.3082 (12,-0.16)(87,-0.14)(93, 0.05}
1C 0.9099 C.5038 (10, 0.5%)
11 0.7578 Ca1769 (3, 0.06)( 5, 0.18)(82, 0.07)(88,-0.C7)
12 0.7717 C.2068 ( 6y 0.21)(81,-0.08)(87, C. uo)(ya, ¢.C8)
13 0.6490  C.2185 ( l, 0.3C)( 7,-0.06)( 9, 0.07)(11,-0.10)
14 0.6322 0.2205 ( 2y 0.30)( 85=0.06)(12,-0413)(87,-0.08)
15 3.3572  0.8190 (15, 0.07)(21,-0.07)(27, 0.07)(33,-0.07)
(39, 0407)(45,=0.07)(51, CaCT)(573=0.C7)
~ 163, 0.07)(694=0.07)(75, 0.06)
16 3.3169 0-8716 (16, 0.071(22,-0.08)1(28, 0.08)(34,-0.08)
o 140, 0.08)(46,-0.08)(52, 0.08)(58,-C.08)
(64, '0.08)

Computer Qutput No. 10.
Time

= 6:10 AM

0.08)(70,-0.08)(76,

Brown's system observing all outputs



L

OBSERVED OUTPUT NUS.1,2,3,455,6 TINME = 8:C0 AV,
OBSERVABILITY FUNCTIUNS
C+4545D~03 0.19850 00 0.26150 GO C-35560
C.42830 CC___ C.6752D_00____0.68120 0C _ _ 0.7196u
T0.11C30 C1° C.13170 0l 0.72010 01 0.731C0
0.145S0 €2 0.14620 C2 0.23210 02 0.23260
STATE VARIABLE NO. CN LEFT MARGIN

1
2
3
4
5
6
7
8

13

14

15

16

T
2
3
4
5
/S
—
8

g

1G

11

12

137

14

15

T

- £.L00045 Q.13985¢C 0226149 0235902 0242835 L.01523
 C.25775__0.51922 __-0.01157 _=0.02284 _ C.C1492 _ =0.15C01L
TTCL631C6 —0.721188 -0.01143 0.0249C G.03887 -0.02487/
-C.258CS 0.CC095 0.01085 =-0.00368 0.92040 =-0.0465C
-o.c0018"“'o.18426”“—c.00177““4o.00474‘M“c.osoqx T 0.18875
-C.013C0 =0.00626 =-C.l1l2063 =-C.27616 C.C0CT4 004604
T L0638 T=0.0750077 70.00548  =0.0179L T 0.21263 C.0&s62
C.00405 =~0.00221 =0.37591  0.0844C G.00464  0.12060
TTLU.01617  —0.006457 T 0L13571 0.24898  U.ClC18 T =0.06224
C.00220 0.01121 0.39581 -0.08366 =—-0.05615 =0.1G8665
TUGL00123 T=0.61358 T T=0.24C007 T 0.00341 -0.02206  0.82350
C.25841 C.74321 =0.00210 =-0.01629 011948 0.0873%8
. 63345 T=0.30371 T 0.02333 7 =0.02935  0.28324  0.032233
_“WC,OIZSS_E_O.C227O._#0.23077_W"Q.67789_“”Q.QICSSM"WO,lZ7du
20.00352 =0.C0126  C.74640 —0.27236 -0.00282 0.4C71S4
-0.CC056 =-0.01970 C.00586 C.00973 0.CCC34 0.C03%6
C.00C15 =0.00054 =0.00937 —-0.00133 -u.03173  0.03281
DEGREE OF CBSERVABILITY PeR STATE VARIABLE
——“gfjﬁDAHDMWHUPPtR OBSTRVEL GUTPUT 0. AND PREPORTIONAL
DEVIATION  BUUND PART GF THAT VALUE TF PART IS OVER 0.05
0.0822 c 0195 (9,=0.163{11y=Cala) T
0.C338 C.CC082 ( 9,-0.16)(11,-0.15)
TT0.0821 T C.C192 7 (79, 0.15)(11, C.l4) o T
1.€C0C C.$%02 ( 5, 0.59)
CLO05 0.5978 (7, 0.06)(11, 0.59) 7 T
1.CCCC__ €.S754__( 6, 0.98)
T 1.0454 0 4691 (12, 0.43)(15, C.08)(16,=C.C7Y T
0.9053 Co2832 ( 9, 0.28)(12,-0.08)(15,=0.C&){16y G.CT)
0.9717 02287 (79, =0.CT){L2,-0.19) T
0.6183 €.2862 (10, 0.32)(12, 0.09)(16;-0.C7)
0.C817 7 C.CLl85 ( 9,=0415)(1lLly,=-0alay T T
0.0337  C.CC80  ( $,-0.16)(11,~0.14)
0.5913 C.2784  (T1y 0.38)( 7,-0.09)(11,-0.26)
0.5978 0e2547 { 2y 0a34)( 8,=0.0811(12,-0.23)
37125 709227 (15, 0.06)1(21,=-0.07)(27, 0.07)(23,~0.07)
o (39, 0.07)(45,=0.07)(51, 0.073(57,-0.07)
o T 163, 0407)(6943=0407)1(75, CoCTI(ELy~0.0T)
BT, _0.07)(93,-0.07)
3.7029 079225 (16, 0.05)1(22,=0.07)(28, 0.C7)(34,~C.07)
i (40, 0.C7)(46,=0.07){(52, 0.07)(58,~C.07)
T T T T T T 04, 00T ) (T04=0.07) (76, 0.C7)(82,-0.07)
{88, 0.CT7)

Computer Output No. 1l.

1.

Cl

cc
Co

C2

SIX SMALLEST EIGENVALUES WITH ASSGCIATED EIGE NVECTC&S

(94,-0.07)

Time = 8:00 AM

Brown's sysbem observing all outputs
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GBSERVED CUTPUT NUS<132:3144546

CBSERVABILITY FUNCTICNS

0.7811D-03
0.3669D CC
0.1254D ©1
0.14430D ©2

STATE VARIABLE NC.

1
2
3
4
5
6
1
8

G

e

11
12

13

L4
15

16

Computer Output No. 12.

£a00018

C.47895
C.39111
~0.48040

~ (6.0C0CS

-C.01276

¢.CCCE2

C.01353
=(.01153
C.01443

-C.001C7
Ca48C73

C.39332
C.01284_
-C.01285
-C.00039

C.00026

Time =

TIME =10:C0 A.Ma

Brown's system observing all outputs
10:00 AM

0.16830C 00 0.22540 GO 0.34930L CO
C.51420 CC__ 0.7217D_GCC ___ 0.77596u5_00 _
C.1395D C1 072990 01 0.73830 Cl
0.14470 G2 0.23270 02 0.2331C C2
CN LEFT MARGIN
 SIX SMALLEST EIGENVALUES WITH ASSOCIATEC EIGENVECTCRS
C.15821 0:22536  0.34928 V356588 Le51421
_ ~0.35446_ 0.02214____ 0.13344 0.01C67__=0.0576C
0.43412 ~0.01393 0.1113C =-0.03278 0.064304
~0.C0255 ~0.02706 _ 0.82662 _0.00868 =-0.01751
-0.1255¢C C.00927 0.19432  0.01897 0.06137
0.01680  C.25671  0.C016C  C.l9672  0.0C0063
0 15299 =0.01742  0.15864 0.01683 -0.0412s
_ 0.C0786___ 0.25465__ 0.01012 -0.18955_ -0.01323
—0.01178 =0.28665 —=0.00205 =0.16861 -C.05065
-0.02420 ~0.27169 =0.06294 _ 0.17163 =-0.04317
C.06554 0.55620 0.01730 =0.00187 0.1154C
-0.5C702  0.02108  0.36194 0.03908  0.04745
0.61845 -0.06971 0.29471 0.02696 =0.04914
 =0.03587 —C.43837___ 0.01128 =-0.066445  0.47583
~0.C0508 ~0.45189 =-0.02187 0.64935 C.48512
0.01985 -C.00556  0.00027 _-0.00677__ 0.C0449
0.00172 7 C.01531 -0.02731 0.00322 0.02186
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SEGREE UF OBSIRVASILLIY PLR STATE VARIAnLE
STAnDALD  UPPER  ORSeRVEL JUTPUT #de AND PRyl [0HAL
CEVIATLION  ROUMD  PART F THAT valtis ©F 2 rT 15 UVER 0.085

1 0.0582 C.0l24 ( G4-Co13)(11,=0.10C){12, 0.10)
2 0.C7i2 C.0Ll52 ( $9,-0.13)(11,-0.10)(12, G.10)
3 0.0580 €.0122 (9, 0413)(11l, C.1G)(12,=-0.10)
4 1.C000__ Ca.G7CS__( 5, 0.97) N - e
5 1.C393 0.4163 (11, 0.39)(15, 0.07)
6 1.CC0C C.5766__{ 6, 0.98) s
7 1.0310 47127 (12, C.44) (15, C-07)
'8 1.0108  0.2087_ s,_o 11)(114=0410)(12,=0.09)(15,-0.06)
(16, 0.07)
9 0.9736  C.2143 9,—0 15)(11,=0.09)(12,~0.08)
10 0.6281 C.1616 (10, 0.213(11ly 0.09)(125 0.08)(164=(<C5)
11 0.0580 C.012C { 9,=0.12)(11,-0.09) (12, C.10) o
127 0.C706 €. 0145 ( 94-0.12)(11,-0.09){12, o 10)
13 0.5966_ C.2384 (1, 0.32)( 7,-0.08)(11,=C.21)
14 0.5954 C.2545 ( 2, 0.34)( 8.*0.08)(12,—0 23)
15 3.7111 C.9124 ;}s,wp,oJ)4211e0.07)127,>o <07)(33,-C.07)
(39, 0.C7){45,-0.07){(51, u C7)(57,-C.07)
(635 0407)(69,~0.07)(75, C.C7)(81,y=0.C7)
(87, 0.071(93,~0.07) _
16 3.6786 08647 (224=0.06)(28, 0.07)(34,-0.07)(4C, 0.C7)

145{—0'07)(52{”0;07)(58;40;07)(54;”01673
(70,-0.07)(76, 0.07)(82,-0.67)(88y 0.07)
(94 4-0.07)

Computer Output No. 12 (Continued)



OBSERVED OUTPUT NUS.11223+4+5,46

L7

TINE

OBSERVABILITY FUNCTIONS

C.14320-02
C.41500 0C
C.15830 01
C.13CSD 02

0.1655C 0C

_ 0.45150 CC__ 0473700 CO___
0.2C07D0 01 0.77250 01
0.13130 02 0.2351C0 02

0.2008C CO

STATE VARIABLE NC. ON LEFT MARGIN
SIX SMALLEST EIGENVALUES WITH ASSCCIATEC EIGENVECTORS

=12:10 P.V.

0.31480
0.7813¢0

T C.7828D

6.2359C

£.00143 0218541 0:2C092 0231415 0241504 045153
1 C.57352__=0.C3631 _ 0.012i2___0.24141 -0.02675 -0.037C4
2 C.03565 0.43C12 =-C.35834 0.01693 =0.03&75 0.CT1L25
3 —(.57762 -0.02232 =-0.02464 _ 0.77182 -0.01935 =-0.Cl454
4 C.0C072 ' =0.01215  ©.C0487 ©.24302 0.045C1  0.0235S
5 =C.C0481 0.18329 0.22781 0.010C7 0.02C34 =0.C45C9
6 CeCCO07C 0.14083 =~C.13861 ~ 0.01433  0.00289 =-0.08613
7 C.02854 =0.CCC55 0.02109  0.00532 =0.19712 _=-0.01409
87 =C.00873 =0.20586 =0.25397 =0.02293 =0.00902 =-0.04C24
§ €.01208 =-0.CCS57 =C.00605 =-C.C501S 0.14C54 0.0C254
167 Ca012S% 0.5428&  0.54310  ©.04470 =0.00251  0.50643
11 C.57692 -0.05982 C€.00567 0.52841 0.06429 0.CC7CC
12 0023576  0.57960 =-0.55140 C.03033 =-0.01055 =0.08595
13 €.00539  -0.28730 -0.36431_=-0.0095C ~-0.C7677 _ 0.84408
14 =(C.027S4 ~=0.CCC65 =0.04985 =0.01593 0.96240 0.0645G
15 =-C.CCOl7  0.Cl445 =0.01751 ~-0.00005 -0.00144 0.CC821
16 C.0C0%6 0.C1314 0.01348 =0.02629  0.00753  0.01ll4e

CEGREE OF OBSERVABILITY PER STATE VARIABLE

STaknNARD YRR DRSERVED GUTPUT mO. AND PRUPTRTIONAL

_LEVIATION  B30UND VAT LF THAT VALue IF SART IS LVER (.05
1 0.0659 C.0142 { 9,-0.06)(12, 0.16)(93, C.C&)

2 0.5821  0.1503  ( 3,-0.21)(12, 0.10) B )
377 0.0652  C.0137 { 9,y 0.06)(12y~0.16)(93,-C.C6)
4 1.C001 Ce5421 { 59 0.94)

§ 1.1807  C.3CClL {10, 0.C6)(1lly G.22)(Y94, 0.07)

6 1.C000___ €.9808 __( 6, 0.98) N S
7 1.0208 C.5143 ( 8, 0.05)(12, C.49) T
8 1.0967 0.2061 {(1Cy=0.06){11,-C-13)(94,-C.C5)

G 771.5416 T C.4066  { S$9=0415)(16+=0-06)(8L,=C+C5)(88,-0.09)
{93y, 0.13)(94,-0.07)

107704526077 7041392 (10, 0L.21){11, G.13) o

11 0.0654  C.0136 _( $,-0.06)(12, C.161(93, C.C6]

12 0.4863 CU1C22 TUT3,-0.14y 176,y 010 (22, Q.CTY

13 0.6188 0.1962 { 1y Ce?27)( 7,-0.06)(11,-0.14}

14 0.5936 042635 1 2y 0.36)( 84=0.09)(12,~-C.25)

15 3.5281 C.8466 (21,4-0.07)(27, 0.07)(33,-0.07)(39, 0.07)
T T T T T T T 45, =0407) (5L, 0.0T)(57,=0.07)Y (624 0.CT7)

: N L (69,=0.C7)(75¢ 0.07)(81,-0.06) )
16773.4818 708272 (22,-0.06) (28, 0.071{(34,-C.C7)(4C, C.CT)

(464=0.C7) (52, G+07)(58,~CC7) {64, C.07)

Time 12:10 PM

TU{T704~0.CTY(T6y 0G.07)(82,=-0.06)

Computer Output No. 13. Brown's_ system observing all outputs
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VII. SUMVARY AND CONCLUSIONS

This thesis expanded the idea of Brown with regard to the question,
"How observable?". The criterion for the measure of how observable the
system is was more fully developed. This overall system criterion turned
out to be the smallest eigenvalue and its associated eigenvector of the
symmetric QNQE matrix,

In addition, two more criteria were developed which are measures of
how cobservable each state-variable of the system is. One of the criteria
is hased on the standard-deviacvion error analysis and the other is based
on the upper-bound error analysis.

The numerical techniques for calculating these criteria were fully
developed., Two inertial navigation systems were used as examples to test
these criteria. The results are contained in this thesis.

A method was developed to compute the Q matrix of a time-varying
sysvem., It involved differentiating a function a considerable number of
times. This differentiating was done on the compuﬁer algebraically ratlier
than numerically.

By using the criteria developed in this research, a designer of a com-
plex system should be able to gain a much better insight into his systen
with less calculation than by other methods available to him. Exactly how
these criteria would be used would depend on the specifications of the
system and the designer using them.

It should be pointed out thatv all criteria are obtained from the Q

matrix and can be applied to the controllability @ matrix as well.
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X. APPENDIX A - FORTRAN PROGRAM FOR CALCULATING

THE OBSERVABILITY CRITERIA

The program is as given in Computer Output Number ik, The sub-
routine for calculating the eigenvalues and eigenvectors is given at the

end of the main program.



5k

. LS/360 FCRTRAN.H.. i m e

c COMPUTATICN OF CBSERVABILITY FUNCTICNS
DCUBLE PRECISION ({18, 96)vU(lSy;B}»A(324)7R(324)9F'78)1
I1X(18)sAM{18,18)9CD(4),C({16:2,16)sFN{4),CC{512),P(18:G6),
2CM{ 1694 ) o VT(LT728)oFI(S) sy TaPL Wb T13SBsPI6ESCTXyCXyTCXy
L~ 3ANRMX, ANCRM . e e e
INTEGER IDA(4)9IDS(4)9IP(5)V PC(1728)9I$(18)
EQUIVALENCE (QULJ)sVT( L))o (P(Y}IPOILL) o {C{1}sP{BESI)y. . ..
L(C{L1YeCCLL))(C(L)CM (1))
FORMAT (513) .
FORMAT (/72,10D012. 4/(T59IODIZ 4))
. FORMAT (A1) . ... — S ; -
FORMAT (2i3,;D16. 7)
READ {1,3) PL ... e et
C CLEAR A MATRIX AND IRPUT NEW VALUES
22 READ (1 0 L) N o o e et e
IF {N} 24'24,25
25 . CONTINUE.. — -
NN=N*N
CO 9 I=1,N . S e e e e B
£O0 6 J=1¢N
9 . AM{I,J3}=0.000C . - — - S
8 REAC{156) I9d+7
e IFELT)Y 124512415 -
15 AM{I,J)=T
GO 70 8 O U
12 CONTINUE
C COMPUTE COMPONENTS GF EARTH'S ROTATICN RATE AND_INSERT._.INTO.
C A MATRIX
PI=3.14159265358979300
W=15.041C700*%PI1/(180.0D0%3600. ODO)

o W N

SB=1.CD0/DSART {2000 o e e
P16=P1/6.000
AM(1492)=W#DSQRT{1.0D0=-SB#SB)

AM(2,1)=(-AN(1,2))
e AM{2 53 ) =WESB L L
AMI34,2)=(~AN(2,43))
C CUTPUT A MATRIX S . O
3C FORMAT (%1 A MATRIX®)
WRITE (3:30) o
L8 9C I=1,N
9C . WRITE (352) (AM(I4d)ed=1eN) .. - -
c CLEAR C MATRIX AND INPUT NEW VALUES
CREAD (la L) NM o e e e+ e e e
M=N#NM
NQC=M e e e
DO 16 I=1, 512
16 ... CC(I)=0.000 —— ... . UV

Computer Output No. 14, Fortran program for calculating the observability
criteria




31

32

55

READ (1,6) I4J,.7
IF (I) 35,35+32
CM{TI+Jd)=T

GG 10 31

C CUTPUT C MATRIX

5 CFCRNMAT (/773 9%C MATRIX Y ) oo e
35 WRITE (3,5)
DO 17 I=1,NVM o .
17 WRITE (342) (CM(Iyd)ed=1,N)
C FORM Q MATRIX T o
CO 21 I=1,NM
. .... D0 21 J=1.N._. _ e e
21 QiJ,I)=CM(I,J)
NT=NVM+1
DC 18 J=NT.M
IL=J=-NV e
CO 18 I=1,N
QLI dY=Cal o B}
CO 18 K=1,N
1§ QI+ d)=Q(Iod) #+QUIK ILI®AMIKST) .
129 FORMAT (//73,°Q MATRIX?)
WRITE (33129) o o
0C 125 I=1,N
125 . WRITE (3,42) (QUIyd)sd=1,NGC). .. .
2C2 CONTINUE
C NORMALIZE Q MATRIX R e
CO 14 J=1,NQC
T=C.CDO
‘CC 10 I=14N
1C T=T+({Q(I,J)*Q(1,J))
IF (T) 1l4¢14,19
16 T=1.CDGC/DSQRT(T}
DO 11 I=1,N
11 QUI,J)=Q(I,J)*T
14 CONTINUE

C FORM PRODUCT OF NORMALTZED @ MATRIX ANC ITS TRANSPOSE .AND .-

C COMPUTE THESHOLD LEVEL FOR NEXT PART

46

41

K=0
ANGCRNM=0. CDO
O 4C I=14N
Xx{I)=1.C00

-~ B0 4C J=1,1 - o S — e e ettt e

K=K+1

A{K}=0.COC

DO 46 L=1,M
A(KI=A(KI+Q{IL)=Q(JdsL) . o
IF {I-J) 41,40,41
ANORM=ANCRM+A{K) *A(K) e

Computer Output No. 14 (Continued)



4G CONTINUE
C CALCULATE EIGENVALUES AND EIGENVECTCRS BY JACCBI METRCC

CALL EIGEN (A ,Ry;NyFANCRM ANRNX)
C CCOMPUTE THESHCOLD LEVEL AND SET TO ZERGC ALL EIGENVALUES AND
c ELCMERTS CF EIGENVECTORS WHCSE ABSCLUTE VALUE IS LESS TEAN

C THE THESHOLD LEVEL o e e e et e
IF (ANRMX) 724814572 ‘

8l ANRMX=1.0D-12 .

72 ANRMX=ANRVX#1.00+3

21 FORMAT (//T3,°THRESHOLD =9,014.7) ..
WRITE (3,27) ANRMX

.00 374 I=1,NN. S

IFf (CABS(R(I))=- ANRMX) 366.3667374

366 RUINZ0a00Q oo e o e e

374 CONTINUE
0O 65 I=1,N . e
IF {(F{IJ)-ANRMX) 73973 74

73 . F({I1)=0.0D0 e S ke e e et e e
A{I}=0.000

C CHECKs IF STATE VARIABLE..IS NCT.CBSERVABLE, SET. INDICATCR __
K={I-1)*N
DO 66 J=1sN .. S O
K=K+1

o e ITF {RIKYY 455664945 —

45 X(J)=C.CDC

6& CCNTINUE e s e , . e
GG TG 65

74 A{L)=F(1}

C INVERT DIAGONAL MATRIX
F(I)=1.CDO/FI(I}

65 CONTINUE
C CUTPUT CBSERVABILITY FUNCTIONS AND EIGENVECTCRS
34 FORMAT (*1%y/////,T14,°CBSERVABILITY FUNCTIONS?)
WRITE (3,34) . : RO R
92 FORMAT {710:4015.4)
c e WRITE (3,92) (AQJ) 9d=1yN) - o o
33 FORMAT (T14,°STATE VARIABLE NCe CN LEFT MARGIN®,/7T19,

1°SIX SMALLEST EIGENVALUES WITH ASSCCIATEC EIGENVECTGRS!)
WRITE (3,33)

4C2.  FORMAT {T1696F1045) o o o
WRITE (35402) (A(J),d=1,6)

4C3 .. FORMAT ('+%, T19,5%_______ N T RN
1y ______ e
WRITE (39403 ) oo oo
N&=N*6
DO 365 I=1,N e

2C4  FORMAT (Tl4512,6F10.5)

365.  WRITE (342040 I9(R{JYod=DoNOaNY o oo,

Computer Output No. 14 (Continued)
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C CHECK, IF NG STATE VARIABLE IS OBSERVABLE, CUTPUT MESSAGE
C AND GC TC END ’
¥=C.CDC
DG 57 I=14N
51 T=7+X(1)
. IF {T) 69,68,6S . , ' e e
94 FORMAT {//7144°NCNE OF THE STATE VARIAB*ES ARt Ty
1°CBSERVABLE?®) S
68 WRITE (3,94)
GO TC 78
C COMPUTE GENERALIZED INVERSE
6G . DO 76 D=l aN o e e
0 76 J=1,N
L1=1 e e e L i e e e e e
L2=J
L{I,Jd)=0.000 ... ... . .. e e e
00 76 K=1,N
e U T 9 d)=U(T 9 dI+R(LL) =E(KI=R(L2) .
Li=L1I+N
1¢& L2=L2+N U PN
CC 80 J=1,M
DO 77 I=1,N
A(I}=0.CDC
BC 77 K=1,N . . . e

71 ALTY=ACTI+U(T, K)*Q(K.J)
DO 8C I=1,N . .. e e
8¢ PUI,J)=A(1)
C CUTPUT HEADINGS
6C FORMAT (Tl4,°DEGREE CF CBSERVABILITY PER STATE VARI',

1'ABLEY /717, *STANDARD UPPER CBSERVEL GUTPUT NC. %5 .
2YAND PRCPCRTICNAL® o /T17,'CEVIATICN BCUND PART OF %,
3YTHAT VALUE IF..PART..IS COVER Oal® ) . o e e e
WRITE (3,60)
C FOR EACH STATE VARIABLE , DO THE FCLLCWING ...
DO é1 I=1,N
C CHECK, IFf STATE VARIABLE IS NOT CBSERVABLE, CUTPUT MESSAGE
C AND GO 70 NEXT STATE VARIABLE
~ IF (X{I)) 84+85,84 . .. e e e e

93 FORMAT (T14,12,T17,'NCT OBSERVABLE')
85 . WRITE (3,93) I.. . _. .. .. o o

GO TC 61 -
C CALCULATE STANDARD.DEVIATION.CBSERVABILITY .. . _ .
84 T=0.CDO
... DO 62 J=1,M .. _ R R e
62 T=T+P(1I .J)*P(IpJ)

Computer Output No. 1k (Continued)
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C CHECK, IF STANDARD DEVIATIGN CBSERVABILITY IS ZERO, GUTPUf
C ZERO FCOR BOTH TYPES CF CBSERVABILITIES ANC GC TC NEXT

C STATE VARIABLE o : e
IF (T) 309,309,633 . . . . —

3C9 ANCRM=T
WRITE {3,7) I,ANCRM,T

GG 710 61
63 ANCRNM=1.CD0/DSGERT(TY . . e e e e e e et e
C CALCULATE UPPER BCUND CBSERVABILITY
8¢ T=0.CDC e e
CO 38 J=1,M
38 T=0ABS{P{IJ)})+T . _ . __.
52 T=1.CDO0/T

C COMPUTE DECIMAL PART OF EACH CBSERVEL CUTPUT VALUE IN TRE.
C STATE VARIABLE
[SS=C
319 CC 320 J=1,M
A{J)=P{Iqsd)=T :
C CHECK, IF DECINMAL PART IS OVER 0.1, STCRE, TC BE USEC LATER
CIF (DABS{A(J))=0.1D013.3204320551 . . o e
51 [SS=15S+1
A{ISSi=A{J)
IS{ISS)=J
32¢ CONTINUE
C OUTPUT DEGREE OF OBSERVABILITIES ANC DECIMAL PARTS OVER C.l

7 . FCORMAT (Tl4,12:7179F7e4sT273F7443(T3654(AL3125%5'3F542.
1v39) 1))
WRITE (347) IsANCRMsTo(PLsIS(J}»A(3)5d=141S8) 0 . ...
61 CONTINUE
76 CONTINLE . . e e = e e
3C0 CCNTINUE
....GC T0 22 e e e et e
23 FCRMAT (‘l'v//T3,'EAD GF PRCBLENS') 1
24 WRITE. {3323 ) o o e e el et e e+ e e
STCP : :
END

Computer Output No. 14 (Continued)



NN=N*N
J=N+1
D0 220 1= 1 NN
220 R{I)=0. O
DO 215 I=14NNyd
215 R{Ii=1. C , . L
C CCMPUTE INITIAL AAD FINAL NCRNS (ANORM ANC ANCRMX)
IF(ANORM) 165,165,440 L
40 ANORM=1.414%DSQRT(ANCRM)
ANRMX=ANORM*1.0D-12/FLCAT{N)}
C INITIALIZE INDICATCRS AND CCMPUTE THRESHCLOC,
. INC=C e e e e e e
THR=ANQORM
45 THR=ETHRZF L BA T UN ) oo o o e e e+ e e+ e e e
50 L=1
. 55 M=L+1 e e e e e e e
C CCNMPUTE 51\ AAD COS
B0 MG m UM M r MY /e e eeeeeee e et et oo e e e e e et
LQ={L*L=-L)/2
. LM=L+MQ . e
62 IF(DABS(A\LN))—THR) 130965,65
65 IND=1 e e e e e e e
LL=L+LQ
R Ml=MEMG . e e e et e e e e e e e e e e o e e e <
X=0. 5*(A(LL)—A(NN))
.68 Y=—A{LM)/DSGRT{A(LMIBALLMIEX®X ) o i i e e
IF(X) 7C4y754575
.70 Y=-Y e e
75 SINX=Y/DSQRT(2. O*(l O+(DSCRT(1.0—Y*Y))))
CSINXZ=SINX RS INK . e e I -

78

29

£S/360 FORTRAN H

SUBROUTINE EIGEN (A3R;NyFANCRNM 9 ANRNMX)
DIMENSICN A{1),R{L),F(1)

DOUBLE PRECISICN AyR,ANCRMyANRMX yTHR X Yo SINXK;SINX2,

COSXCOSX2+SINCSyF

CCSX=DSGRT({1l.C~- SINXZ)

. COSX2=COSXxCQSX .. w~_mm“wwwm.;UmmmrMM-."h“mﬁmm“_m_“

80
85

90

SINCS =SINX*CGSX

; RCTATE L AND. M CCLUMNS e e
ILQ=N#{L-1)
L INQ=ENX(M=1) . _—

DG 125 I=1,N

IG=(I*I-1)/72 . ... —_— e ; e e s e e

IF (I-L) 8C,+120,+80

IF (I=M) 859120990 i i e e et

IM=T+MQ
.GC TC 95.
IM=M+IQ

Computer Output No. 1hk (Continued)



CIF (X=F (I3 dT2 9 T3 0 b T oo

95
100
105

1l1c
120
125

c

C
130

135

C
140
145

1150
155

c
160

C

165

170

171

173

172

174

60

IF(I-L) 100,105,105
IL=1+LQ

GO TO 11¢

IL=L+IQ

X=A(TILI*COSX—A({IVM)®SINX i e meetm e e e e e e e o

A(IMI=A(TIL)=SINX+A(IM}=COSX
A{IL)I=X

ILR=ILGQ+I

IMR=IMQ+I
X=R(ILR)#COSX-R{IMR)«SINX

RIIMRY=RUIILRIFSINX+R{INMRIKCOSX e

R{ILR)=X

CONTINUE

X=2.0#A{LVM}=SINCS

Y=A(LL)*COSX2+A{MM)I*SINX2-X
X=A{LL}¥*SINX2+A(NMM)*COSK2+X

A(LMI=(A(LL)-A(NM)Y JRSINCS+A(LMI*{COSX2-SINX2Y i
A{LLi=Y :

A{MMI=X . e e e e
TESTS FOR CCMPLETICN ’
TEST FCR M = LAST CCLUMN ... . .. . . B

IF(VM=N) 135;140,135

N=M+1 - o . e S

GO TC 6¢C

TEST FCR L = SECCND FRCM LAST CCLUMN . .. . . .

IF(L—(N=-1)) 145,150,145

L=L+1

GG TC 55

TFCIND=1) 1605155,160 - e - S
IND=C

GO 70 50 e e e

CCMPARE THRESHOLL WITH FINAL NGRM

IF(THR—-ANRMX) 165,165,45 e i e e o e

SORT EIGENVALUES AND EIGENVECTORS

B0 170 J=1 o N e e

K={(J+1)%xJ)/2
FLJ)=A(K) e e e e e e ek e e i e e
CO 185 I=1,N

X=F(I) e e+ ¢ e e e e

00 172 J=I1,N

X=F{J}

L=J - e e e

CCNTINUE
IF (L-1} 185,185,174
F(L)=F(I)
F(I)=x _ _ _
IM={I-1)*N

Computer Output No. 14 (Continued)



IL=(L—-1)%N
CC 180 K=1,N

IM=IM+l

IL=IL+1
X=R{IL) e e
ROILY=R{IM)
180 RIMI=X R
185 CCNTINUE.
RETURN L
END

Computer Output No. 14 (Continued) .
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XI, APPENDIX B - FFORTRAN PROGRAM FOR CALCULATING

THE GENERALIZED INVERSE

The computer program given in Computer Output Number 15 is a
slightly modified version of the program due to Rust, Burrus, and

Schneeberger (30).
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SURRNDUTING PINL (A, Uyluy"ivf‘)')
DIMEMSIAON AM{z0.20) U2 G)yF20),T(20)
GUURLE PRECISTON :'\oUQ?’.vrv!/l'D? v 7 UL
D10 T=1.N ——
DG 5 J=1.N
5 U{T+d)=0.C
UlIyIi=1.C
19 F{I})=0,"
TOGlL=1.00-20
DOO10T J=1.N
S D2=0.0
DG 7 T=1l,#
7 DN2=02+A01,J)Y*A(1,J)
IF (D2) 13C 100,12
12 Jo=d=1
I (JdMYy 75,73,8
8 PGED L=1,2
BN 33 K=1,J#
T(K)=C.72
DO 30 IT=1,.M
30 TIKI=T{(K)+A (T, Jd) =0 (T,K
DD 45 K=1,JdM
I F FARY) 34,726,334
34 DO 35 =18
35 AT o) =A(Tdl=T{KY=A{1,K)
36 PO &Y I=1,K
40 LT ) =U(T4d)I=TIRIRU(TK) -
45 COnTINUE
5C CONTINGIE
CDI=D2
D2=7.4
CG 11 1=1,M
11 N2=N2+A0 T AT )
IF ((U2/DL)-TOL)Y 55,55,70
55 DG 62 T=1,dM
T(I)=2.0
D6 &7 K=1.1 -
B0 TUI) =TI+ T UKy J2
NO &S T=1.M
AlTJdY=C,0
ud 65 K=1,dM
65 A(T +J)=A(L ) =A( T RIRTIK)%F{K)
D?=f.@
DY 16 1=1,4
16 x)_’ D2+l T.d)xU(T )

GO T 75

Computer Output No. 15. Fortran.program for calculating the generalized
inverse



oL

70 FlJ)=1.0

75 D2=1.0/DS0RT (D2)
BiT a0 I=iadi

8¢ AT o) =AT,d1%D2
DO &5 I=1,J

) UCT ) =U{1,4)%02

120 CONTINUE

D=0

T 1P K=Jd, N

120 D2=D2+al 1R )&Ud,K)
130 A(ly4)=D2

[ S RN
Wi P URNN

FAD

Computer Output No. 15 (Continued)
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XII. APPENDIX C - FORMULATION OF THE @ MATRIX FOR THE

LINEAR TIME VARYING SYSTEM

For the 16 state-variable system, some of the elements of the C
matrix are time varying as shown in Table 2. The variable elements are

defined as shown in Equation Al through A6.

CMX - = cos {it (Al)
1- &02 sin®0t
V1 - cosQt - sb2 sin QO
Cy = (42)
/1 5,2 sin“0t
CMZ. =0 (43)
8, sin Qt V1 - cost - Sb2 sincQt
Coxe = % (Ak)
1- sb2 sin?Qt
Sb sin Qt cos Qt
C = (45)
V
Y /i - Sb2 sin0t
(A5)

Coz © VY1 - sb2 sin?0t

S, is a constant depending on the latitude and ( is the earth's rotational

D
rate in rad./sec. The unit of time used is seconds. For a more detailed

information on these elements, see the paper by Brown and Friest (8).
According to Equation 7, fifteen derivatives must be taken to form

the full Q matrix for this sixteen state-variable system. Instead of

forming the Q matrix as shown in Equation 7, the C matrix was differenti-

ated and sﬁbétituted into the P matrices as shown by the set of equations



numberead A7.

T

Pl =C

p. = atct + ot

>

p, = 47T + 2T + &7

3 - (A7)
'_‘3 m 2. o

P, = A ¢l + 3Tyt +¢T
1y 3 2ue T eeed

P, = AT 4 ua®)%et + 6(aT) T 1aT6T £ET

The number of dots above the symbols indicates how many times the matrix
has been differentiated with respect to time. The coefficients of

matrices are the binomlal coefficients.

To differentiate the C matrix, each element of the C matrix was
differentiated as many times as required and the value substituted into
the C matrix.

Four parameters were chosen so that when they were differentiated
with respect to time, the differentiated term was a constant times a
product of the four parameters. The parameters chosen are shown in the

Equations A8 through All.

v /l - cosZt - sz sin Qt (48)

x = cos Qb (A9)

y = 8, sin Ot (410)

zZ = L ) (A1)
/1 - 5.2 sinas

b

The derivative with respect to time is given in Equations Al2 through AlS.



dw

a(t)

dx

a(at)
ay
a(Qt)

dz

a(at)

The elements of

in Equation Al6

C =

Differentiating

in Equation A2l.

WX

67

1 -1

= Eg; - Sb] Xyw (AL12)
1

=-=v (A13)
Sy

=8, X (ALL)

=5, xyz3 (AL5)

the C matrix are given as functions of the four parameters

through A20.

Xz (A16)
= -wz . (AL7)
Wyz (A18)
xyz (A19)
= (A20)

Equation Al6 by the chain rule with respect to Qt results

-(é;) vz + 8 xCyz3 (aA21)
b

The first term of Equation A21 can be obtained by multiplying the

1

Cux term by - Sg x_ly and the second term by multiplying by Sb xyzz. A

set of multiplying terms were formed for the parameters as shown in

Equations A22 through A25.
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wM = [—l— - 5. ] w e xy (A22)
S b
b
1 -1
xM = -(gg) x Ty (A23)
yM = 8, xy_l o (a2k)
zM = Sb xyz2 ' (a25)

For each term two positions in memory are needed; one to keep track
of the exponents and the other to carry the value of the term. After the
initial value and exponent has been entered into the memory for a func-
tion, a search i1s made for the first non zero exponent of the first term.
When it is found, the exponents are added to the exponents of the multi-
plier term and the value of the term is multiplied by the value of the
multiplier value. The new pair is stored in another place in'memory
reserved for the derivative. The value of each term is added to the
memory position which contains the value of the derivative.

Each time a new term 1s formed a search is made through all the other
terms of the derivative to find another term with the same set of expo-
nents. If another term is found, the two are combined to form one term.
If the value of the new term is zero the term is eliminated completely.
This procedure is followed because of the increasing number of terms with
each differentiation. For example, if we start with a term with three
parameters and assume that all terms after the first differentiation will
contain all four terms, not combining the term would result in about 800
million terms on the 15th differentiation. With the combination and

elimination, the 15th differentiation may contain about 1000 terms.
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The number of terms in the 1lhth differentiation was counted by the
computer. Without the combination and elimination of terms, an estimated
200 million terms could result. With the combination and elimination of
terms, the 1lhkth differentiation had 64 terms for Cux’ 511 terms for CHY’
512 terms for C__, 64 terms for va, and 63 terms for C,,e The terms for
the 1bth differentiation were counted to insure that enough memory space
was allotted in the computer program.

The Fortranmﬁrégram is given in Computer Output Number 16. More
detalls about this method can be obtained from the program. This pro-

gram was inserted in the program given in Computer Output Number 1L

replacing the part of the program which formed the C and Q matrix.
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C SET NUMBER GF SYSTEM QUTPUTS AND CERIVATIVES T

NM=d
AD~A l
NC1l=
N‘&V*NDL
NEC=V

C SET A COITIVE CERIVATIVE PARAME
ILA{L)=257%256 '
IDS(1)=2%256%256%256
IDA{2)=256
IDS(2)=256%256
IDA(3)=256%256
IDS{3)=256

CIDA{4)=25T7x256+2

I0S(45=0
CC 142 I=1,4
142 IDA{[)=ICA(L)-ICS{I}
C SET FUNCTIGON PARAMETER PCOWERS

CIe(ly =
IP(2) T =((s E+6415256+64)%256+65
[Pi3)  =((c5 2)0164) 256+65)%256465
[Pl4)  =((64%256+65)%256+65)%256+65
IP(5)  ={(64%256+64)%256+64)%256+63
Trcu=s a

DC 3C0 ITCTAL=1,4
WI=(ITOTAL=-1)*PI6
ITEST=1

TITEN=L
ITINE=4 +2%[TCTAL

145  ITIVE=ITIME-12
l4¢ ITEST=ITEST+1

(64 256+63) 2564642256465

CIF O (ITIME=12) 147,146,145

TERS PCWERS

C CHECK, IF ANY PARAMETERS ARE ZERC, ACD 10 MIN.

147 FN(3)=DSIN(hT)
If (DABS(FEN(3))=(1.00~161})

108 108,107

1¢7 'FN(Z)—DSQRT(‘.UDO FN{3)¥FN(3)

) _IF (CABS(FN(2))=(1.00~-16))
108 WI=WT+216/12.C00
ITEN=2

LQ? 108,155

C BE TAKEWN

TC TIVE

Computer Output No. 16. Fortran program for formulation of the Q matrix
for the linear time varying system
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C INSERT VALUE CF PARANETERS
FA(3)=0STIN{aT)
FAN(2)=DSQRTIL.000-FNI3)4FN(3))

155  EN({3)=Sa%FN(3)
EN{1)=DSCRT(LCLO-FIN(2)4FN(2)=FA (3}
FN{4)=1.000/DSURT(L.0CO=FN(3)«FN(3))

C INSERT VALUE CF FUNCTIOAS
FILL) =FN(2)%FEN(4)

FI(2) =(~FAN{1))}%FN(4)
FI(3) =EN(LI=EN{3)=FN(4)
FI(4) =FEN(2)%FN(3)%FN(4)
FI{5) =1.0D0/FN(4)

CC 16 I=1,512

FN(2))

te - CCily=C.C0C

BC 164 I=1,5

IR=(3+1)/3

[C=1-2%{IR=1)
164  Cll,IR,ICI=FI{I) ,
C INSERT VALUE OF DERIVATIVE MULIPLIERS

Co(1)= (l.GDO/SB«SB)*FN(Z)*FN(3)/(EN(1)$ﬁ@ﬁll[m””_“.“_

Co(2)= (3)/(FA(2)*(~SB)T
_CD(3y)= S““ N{2)/FNI

T Cht4 )= sa»rm<2)anf3>=FN(4)*FN<4>"'mm”ww““"

127 CONTINUE

C CUTPUT VALUE CF PARAMETERS A4ND DERIVATIV
270 FORMAT( 14,73, "VALULS GF THE PARAMET

WRITE: (3,270)
2C3  FURMAT (/T3,408FN(®,12,%)

WRITE(3,203) (d, A(J), =1
273 FCRMAT (//T3,°VALUES GF Ti
274  WRITE (3,273)

205 FCRMAT (/73,4 01C0(9,12,8)=",FL2.9,* ¢

275 '“qurE’(3,205> (J, Cu(J yJ= 1,4)

C“REPEAT,THE.FGLLUb[ﬁGmfowllwaCBWE%ﬁﬁmﬁyﬁﬁilﬁﬁ

CO 117 J=1,5
C CLEAR AND INITIALIZE WORKING NMENORY
106 DG 141 1=1,1728
. VT{I)=0.CD0
141 IPD(I)=C
TIL)=FI(J)

IPC(L1)=1P{J)
C SET INDEX VALUES AND COUNTERS
1“-\3 J)y/3 )
_IC=y=2%(IR-1)} o ) )
KS 1 o T
Kp=1

Computer Output No. 16 (Continued)
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MULTIPLIERS

RS )

SR B

?
RE DERIVATIVE NMULTIPI

0)}

LIERS'")
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C REPEAT THE FCLLCWING 7O 117 FCR EACE CERIVATIVE TC 3£ TAKEN
DC 117 I=1,ND
C SET CCUNTERS SG THAY WORKING MEMUORY CanN BE F
C ALTERNATE ENDS FCR £ACH SUCCESSIVE LCERIVATIV
KS=KS= (-
TR IXS) 180415615 .
15¢ K=1728
L=KP
GO TC 152
151 K=1

152 Le=KP
KP=C ' '

C REPEAT TC 116 FUR EACH TERY
NG 110 LA=1,.L5B
[FXL=IPO(L)
CTX=VT{L}

C REPEAT TC 103 FUR EACH PARAMEYER
CC 1C3 JA=1,4
JE=5-JA

C EXTRACT THEY PCOWER COF THE PARAVETER
[FX2=1FX1
[FX1=1FX1/256
IFX2=1FX2-1FX1%256=64%

C CHECK,; IF PUWER IS ZERQO, GQ TG NEXT PARANMETER
If (IFX2) 110,103,110
C DIFFERENTIATE WITH RESPECT TO PARANETER BY ACDING ADDITIVE
C DERIVATIVE PARAMETER PQOWERS TC PARANETER POwER CF TERM 4and
C BY MULITPLYING UERIVATIVE MULTIPLIER BY VALUE CF TERM AND
C POWER OF PARAMETER
Lo LA L= 1D (L a DAL dg) T e e
Cx= er=co<aa)>zﬁxz
C CHECK, IF THIS IS THE FIAST TERM CR THE LAST DERIVATIVE,
C ELIMINATE THE FCLLOWING CHECKS
& (KP) 102,210,102 ' i h
1C2 TF {ND=1) 162,162,1C1 .
C CHECK, IF NEWEST TERM HAS SAME PARANETER PUWERS AS ANY CTHER
C TERM, ADD THE VALUES CF THE TaC TERMS
Col Rk s . , CHERYS e

DC 181 LTT=1,KP
IF (IXL-IPD(LK)) 181,182,181
C CHECK, IF THE VALUE CF THE SUNM CF ThE Tal S L
C THE THESHCLL, REDUCE TERM CCUNTER BY CNE AND STCRE L
C PREVICUS TERM IN THAT PCSITICA
182 ANRMX={DABS{CX=VT(LK)))#{1l.00=14)x]l
TCX=CX+VT{LK)

Computer Output No. 16 (Continued)
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[F (DASS{TCAI=ANRNMX) 184,184,163
163 VI(LK)=TCX
6L 10 le2
164 KP=KpP-1
K=K-XS§
IPD(LK)=IPC{K)
VI{LK)=VT(K)
GO 10 L&2
161 LK=LK=KS
C STCKRE VALUE AND PARANMETER PUKER CF TERM IN NEW POSITICN
C ADD VALUE OF TERM TG VALUE CF DERIVATIVE CF FUNCTION
210 IPOIK)=IX1
VTR )=CX
185 K=K+KS . -
KP=KP+1 ‘
162 ClI+15IR,ICI=C{I+1,IR,IC)+CX
1C3 CONTINUE
116 L=L+KS _ , -
C CUTPUT THE NUMBER CF TERMS IN THE NEXT TG THE LAST
C DERIVATIVE, AND THE VALUE OF EACH DERIVATIVE
[F (I+1=ND) 117,211,117
153 FORMAT (/T3,°*DERIV. NC.=',12,° FUNC. RNCe=',12,"
211 WRITE (3,153) z;J,KP ‘ e ; o
117 CONTINUE cT T
GG 216 [=1,ND1 ST
112 FORMAT (/T3,'DERIVATIVE NC.=',I2)
I=1-1
CWRITE (3,112) IO
BC 216 J=1,2 -
216 WRITE (3,5) (C(IsJdeK) K=1,3)
C CLEAR @ MATRIX AND INSERT C MATRIX IATC FIRST &6 CCLUMNS
~ bC 140 1=1,1728 ) o B
140 VI{I})=C.0DC
 G(5,1)=1l.CDC ) . B S
G(13,1)=1.000
Q(7,2)=1.00C ) ) ) )
G{l4,2)=1.000 o ) ) B
. G(1543)=1.000 o o e
0{16,4)=1.000
C0(4,5)=1.000
Gl6,6)=1.C00
Q(lyj)':h(17lyl)wy -~ B
TQ02,3)=CL1,1,2)
Qlly,4)=C(1.2,1) . e

Cl2,4)=C(1,2,2)
C(3,4)=C(1,253)
DC 130 L=1,AD

IF (L-1) 122,122,124

Computer Output No. 16 (Continued)
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C MULTIPLY THE DERIVATIVES BY THE A MATRIX
124 0O 126 L)=~7L
DU 126 J=1,
LU 128 '=¢,m
X{I)=0.C0C
CC 128 K=1,i
128 XOIY=X{I)+/ “K,I)>C(LDyU,K)
. CC 126 1=1, o
126 CULD,JoI) =A(r>

C MULTIPLY THE NEXT & CCULMNS 8Y THE A MATR]

122 CO 131 J=1,0M
I2=L%NN +J
I11=12—-hN
O BC 131 I=lyN
0O 131 K=1,N
1 CUII2V=G(T15I2)+CQ{KyILIXANM{K,T)
TO ThHE & VATAIA, ADD THE PRCLUCT CF Tr
C PRCPER CCEFFICIENT
133 iC=1
LX=_+1 ) o
DU 134 [X=2,LX
CX=FLCAT(IC)
T1=L#NM +2
CC 132 d=1,2
CIl=Il+l N
DU 122 XK=1,4N

3

3 ) ps

132 QUK IL)=Q(K,IL)+C{IXsdaK)RCX
14 'f—rLc (LX=IX))/(IX=1)

136 TINUE -

2C2 cowrrwnu

Computer Output No. 16 (Continued)
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