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I. INTRODUCTION ' 

A paper, presented in I96O by R. E. Kalman (18) at the Fir.it Inter

national Congress on Automatic Control in Moscow, U. S. S. R., suggested 

the use of vectors and matrices to analyze control systems and introduced 

the concepts of controllability and observability. This paper was among 

the first of many papers in a new area of system theory called state-

variable theory. This theory yields a more fundamental understanding of 

the system than the transfer function approach previously used. 

With this theory a group of new terms have been introduced. The 

first of these terms, state of a dynamic system is defined as the smallest 

collection of numbers which must be specified at a present time, t , in 

order to be able to predict the future behavior of the system, provided 

the system's mathematical formulation and future inputs are known. 

The state-variables of a dynamic system are the elements of the states 

as the elements vary with time. These state-variables represent the physi

cal quantities or a linear combination of the physical quantities internal 

to the system. 

The state-variable formulation can be compared to the transfer func

tion approach which deals entirely with input and output quantities of the 

system. A large system may contain some modes of operation over which the 

input may have no control or which may never appear in the output. These 

modes of operation would never appear in the transfer function approach. 

The concepts of controllability and observability deal with these "missing 

modes of operation" and will be discussed later. 
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State-variable theory gives a much more complete mathematical descrip

tion of a dynamic system and is able to accommodate systems with multi-

inputs and multi-outputs much better than the transfer function approach. 

In addition, the transfer function approach can be said to be a subset of 

the state-variable theory, because the transfer function can always be 

derived from the state-variable description of the system, but the reverse 

is not always true. DeRusso, Roy, and Close (ll) states, "From a mathe

matical viewpoint, the state*-variable approach is the use of matrix and 

vector methods to handle the large number of variables which enter into 

such problems. As such, these are not new methods, but rather they are 

the rediscovery of existing mathematical techniques. They aid considerably 

in the solution of linear multivariable problems. More important, however, 

the state-variable approach aids conceptual thinking about these 

problems ••• 

Since this thesis is concerned with linear dynamic systems, all the 

following discussion will be restricted to the linear dynamic systems. 

A. State-Variable Formulation 

The mathematical formulation of a linear dynamic system, in state-

variable theory is forced to fit the following two matrix equations. 

x = Ax + Bv (l) 

y = Cx (2) 

where 

X = n X 1 column vector of the state-variables. 

X = n X 1 column vector of the time derivatives of the state 

variables. 

A = n X n matrix giving the relation between x and x. 
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V = p X 1 column vector of the inputs variables to the system. 

B = n X p matrix coupling the inputs variables to the system. 

y = m X 1 column vector of the output variables of the system. 

C = m X n matrix coupling the state-variables to the output 

variables. 

If at some time, t^, the state of the system, x(t^), is known, these 

matrix equations can be solved to give the following equation. 

^1 ~ 
X(T̂ ) = cp(t^, t^) x(tg) + J ^(t^, T) B(T) V(T) dT (3) 

t 
o 

The matrix, cp(t^, t^), is called the transition matrix. It is the 

solution of Equation 1 when the input vector, v, is zero. As can be seen 

in Equation 3, when the input vector, V(T), is zero, the transition matrix 

would relate the state of the system at time, t^, to the state of the 

system at time, t^. More information on state-variable theory can be 

found in DeRusso, Roy, and Close (ll), or Zadeh and Desoer (33), or many 

other books or papers written about the subject. 

B. Observability and Controllability 

The definition for observability given in a paper by Kalman (l8) was 

later modified by Gilbert (l3) and accepted by Kalman (17). The following 

definitions found in Zadeh and Desoer (33) agree with Gilbert's definition 

and are fairly well accepted. 

Controllability 

A system is said to be controllable if and only if for any state, 

there is an input which will reduce the state to zero in a finite time. 

If all states are controllable, the system is said to be "completely 

controllable". 
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Observability 

A system is said to be observable if and only if in some finite time 

after t with the knowledge of the state-variable description of the 

system and with zero inputs, the initial state at time, t^, can be deter

mined by observing the output variables. 

The preceding definition for controllability and observability gives 

good physical insight into the concept of each, but does not aid much in 

determining the controllability or observability of a system from the 

mathematical point of view. For this reason, some authors prefer to define 

controllability and observability on the basis of a Q matrix. Brovm (7), 

in a paper presented at the National Electronics Conference in I966, has 

a very good discussion showing that the Q, matrix criterion is derived from 

the basic definition of observability given above for both the time-

invariant and time variable systems. 

For the time-invariant system, the Q, matrix is formed as shown below 

for both controllability and observability. 

Controllability Q, matrix; 

Q = [B, AB, AS, . •. A*"^B] (h) 

Observability Q, matrix: 

Q = [C^, AV, (A^)^ C^, ... C^] (5) 

The superscript T means the transpose of the matrix and n is the order of 

the A matrix. The criterion for a controllable or observable system is 

that there be n independent columns in the Q, matrix. This criterion can 

also be stated as the rank of the Q, matrix must be equal to n. For the 

time-invariant system, Chen, Desoer, and Niederlinski (9) has shwon that 
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the complete Q matrix may not be needed to determine its rank. They 

T 
determine the rank for the B or C part of the matrix first, i.e., the 

first p or m columns where p refers to the controllability Q, matrix and 

m refers to the observability Q matrix. The symbols p and m are defined 

in Equations 1 and 2 and are respectively the number of inputs and out

puts of the system. They then add the next p or m columns to the part 

already checked and determine its rank. They keep adding p or m columns 

until the ranks of two successive matrices are equal. The last rank 

determined is the rank of the complete Q matrix. 

For time variable systems, i.e., where the matrices A, B, or C may 

be functions of time, the Q, matrix formulation is more complicated. 

This development can be found in at least two places in the literature. 

The paper by Brown (?) has one development. Silverman and Meadows (3l) 

gives another development. Only the results of the development are 

given here. The notation used here is somewhat similar to that used by 

Silverman and Meadows (31)• A sequence of matrices, P^, P^, P^, 

••• P is defined where n is the order of the A matrix as defined in 
n 

Equations 1 and 2. The sequence is defined as shown by the of 

Equations 6 and 7. 

Controllability: P^ = B 
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Observability: = C 
,T 

(7) 

The Q matrix is defined as shown in Equation 8. 

(8) 

The criterion on the Q, matrix is the same here as before, namely, that 

there be n independent columns for a controllable or observable system. 

It should be noted that this definition and criterion will also work for 

the time-invariant system. 

The paper by Silverman and Meadows (31) also shows that any Q, matrix 

composed of more than n matrices from the sequence will have the same rank 

as a Q matrix composed of only n matrices of the sequence. 

Another criterion for controllability and observability has been 

developed using the transition matrix instead of the A matrix. Since this 

thesis is based on the Q, matrix no further discussion on the criterion will 

be given here; however, more information may be found in a paper by 

Kreindler and Sarachik (L9)* 

Since observability is the main subject to be considered in this 

thesis, the rest of the discussion will concentrate on observability with 

controllability being left to follow by analogy. 
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II. NOT JUST OBSERVABLE, BUT HOW OBSERVABLE 

All the criteria presently available for observability give a 

"yes-no" answer with no indication as to how close to the dividing line 

the system may be. Brown (7? 8) has opened the issue of "How Observable?" 

In the development of the observability Q, matrix, Bro™ points out that 

this matrix relates the state-variables to the output variables and the 

derivatives of the output variables. It is done in the following manner 

for the time-invariant system. Starting with Equations 1 and 2, assuming 

the input to be zero, Equation 2 is differentiated and Equation 1 is 

substituted as shown below. 

yCt^) = 

= CAxft^) 

y(t^) = CAx(t) = CA^x(t^) (2) 

y""^(to) = CA"""^x(t^) 

Equation 2 is differentiated n-1 times because the theorem due to 

Silverman and Meadows (3l) shows that any further differentiation is 

superfluous. 

The set of equations numbered 9 can be rewritten in the matrix form 

shown by Equation 10. 
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[xftg)] (10) 

Let the column vector on the left of Equation 10 be y (t^). By 

inspection the matrix to the right of the equal sign in Equation 10 can be 

T 
seen to be Q . 

The matrix Equation 10 may be rewritten as shown by Equation 11. 

xft^) (ii) 

Brown (6), shows a similar development for the time variable system. 

The results are the same as shown by Equation 7 and Equation 11. 

If the system has only one output, the state, x(t ), can be found by 

T T 
inverting the Q, matrix. However, the inverse of Q only exists if the 

T determinant of Q, is nonzero or, in other words, if the rank of the matrix 

is equal to its order. If the system has multiple outputs it should be 

possible to pick n linearly independent columns of the Q, matrix and invert 

the square matrix. However, the criterion that the Q matrix have n 

independent col'omn also means that the rank be n. Thus, it is now clear 

from where the "yes-no" answer to the observability question came. 

Brown proposes that the degree of independency of the coluimis of the 

Q matrix is also the degree of observability of the system. For example, 

if n columns of the Q matrix are orthogonal, the degree of independency 

of the columns is as high as possible, and the system will be highly 

-  y ( t ^ ) - = c 

= 
CA 

V ( t „ )  
= ' CA^ 
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obnervable. If a vcctor can be found which is nearly orthogonal to all 

the columns of the Q, matrix, then the degree of independency of the 

columns would be low; likewise the degree of observability for the system 

would be low. In this last case difficulty would be encountered in 

solving Equation 11. A small measurement error would be reflected as a 

large error in the solution of the unknowns. 

Furthermore, the direction of the "nearly orthogonal vector" indi

cates the direction of greatest error in the solution of the state-

variableS: If, for example, a three state-variable system had the "nearly 

orthogonal vector" pointed half way between state variable number 2 and 3, 

they would have the greatest error while state-variable number 1 would have 

the smallest error, if all the observation errors were equal. These 

equations are known as ill-conditioned and further discussion can be found 

in a paper by Gavurin (12). 

Since the "most orthogonal" vector conveys considerable information, 

the next problem to be discussed is the evaluation .of it. The development 

shown here is due to Brown (6) in his ujipublished notes. First, the 

columns vectors of the Q, matrix must be normalized because we are more 

interested in the "angles" between the columns vectors and "most 

orthogonal" vector rather than the "length" of the vectors. The Q, matrix 

vri-th its columns normalized will be designated as and its columns as 

w^, Wg, w^, ••• w^. Brown forms an observability function called L which 

is a scalar as shown by Equation 12. 

L = (w^^u)2 + (wg^u)^ + ... (w^^u)^ (12) 
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The symbol, u, is the "most orthogonal" vector with the constraint that it 

be of unit length. 

Equation 12 may be rewritten as shorn in Equation 13. 

L = + WgWgT + ... U (13) 

T T 
By expansion of the Q^Q,^ matrix, it can be shown that the matrix 

is the quantity inside the brackets of Equation 13. Equation 13 may be 

rewritten as Equation l4. 

L = u (14) 

This problem is a maxima-minima type problem very suitable to the method 

of Lagrangian multipliers as given in Chapter 4, Section 5 of Widder (32). 

In this case the constraint is expressed by Equation 15 and declares that 

the "most orthogonal" vector must be of unit length. 

u'̂ u = 1 (15) 

The Lagrangian multiplier form'ulation is given by Equation 16 where 

X, a scalar, is the Lagrangian multiplier. 

[u^(Q^Q^^) u - X (u^u-l)] = 0 (16) 

The indicated differentiation is of quadratic form. More details on 

it can be found on pages 288-289 in DeRusso, Roy, and Close (ll). The 

result of the differentiation is given by Equation 17. 

(Q^Qg^ - Al)u = 0 (17) 

The matrix I is the unit matrix. From Equation 17, it is clear that the 

T 
"most orthogonal" vector is an eigenvector of the matrix. To 

determine the correct eigenvector, the eigenvectors can be substituted into 

Equation l4. The eigenvector which yields the smallest value of L is the 
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"most orthogonal" vector. Another way of determining the correct eigen

vector requires the following development. Rearrange Equation 1? and 

T 
premultiply both sides by u . The result is as shovm by Equation l8. 

\ = L (18) 

This equation shows that the observability function is equal to the 

T smallest eigenvalue of the matrix. Therefore, the "most orthogonal" 

vector is the eigenvector associated with the smallest eigenvalue. 

Since the smallest eigenvalue is the observability function, its 

value gives a measure of the system observability. A small value of the 

observability means that one or more elements of a state will have a 

large error associated with it when determined from observations which has 

measurement error. All the eigenvalues being equal means that all the 

elements of a state are as observable as they can be. 

In order to gain an idea of what the values of the observability 

function mean, a theorem due to Bocher as expressed on page 23^ in 

DeRusso, Roy, and Close (ll) will be used. The theorem states that the 

sum of all the eigenvalues of a matrix is equal to the trace of the matrix. 

T An expansion of the trace of shows that the trace is always equal 

to the number of non-zero columns of the Q matrix. Since all the eigen

values of a "most observable" system are equal, the value of the observ

ability function of a "most observable" system is equal to the n'umber of 

non-zero columns of the Q matrix divided by n. In the case, where there 

are no non-zero columns, the value is equal to the number of outputs of 

the system. 
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Ifneii the smllest eigenvalue is zero, the system is unobservaole. If 

any of the state-variable have a component in the same direction ac the 

eigenvector associated with the zero eigenvalue, that state variable is 

unobservable. All the other state variables are observable. However, by 

the definition of observability given earlier the system is still 

unobservable. 

The preceding procedure is very useful for a small system, but when 

systems get larger and more complex, it sometimes becomes necessary to 

consider the second or third "most orthogonal" vector. For these cases, 

the procedure described in the next section should be helpful. 
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III. DEGREES OF OBSERVABILITY PER STATE-VARIABLE 

FOR THE SINGLE-OUTPUT OBSERVABLE SYSTEM 

For systems which are nearly unobservahle, we are interested in 

which state variables are most observable and which ones are least 

observable. We are interested in finding a figure of merit for each 

state-variable which will reflect how observable the state-variable is. 

The criterion selected for this thesis is based on the increase in error 

of the calculated state-variable over the error in the observations. 

With Kalman filter theory as explained in Lee (20) the error in the 

calculated state variable can be found. However, the work involved is 

much greater than the method proposed here ; and, the error in each 

observation must be known and specified. In the method proposed here, the 

error in each observation is assumed to be equal to the error in all the 

other observations in a "pseudo-normalized sense". Thus, the method 

presented here yields a relatively quick and easy means of gaining some 

insight into the degree of observability without going through the entire 

Kalman estimation procedure. 

In defining the Degree of Observability per State-Variable we will 

use the reciprocal of the increase in the error of the calculated state-

variable over the observation error. The reciprocal is used so that a 

small number will result for nearly unobservable state-variables. 

The two most common approaches to error analysis is the upper-bound 

error and the standard-deviation error. The criterion has been developed 

for both approaches. 
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Let us develop the criterion for the single-output observable system 

first, and consider the multi-output and unobservable systems later. 

Referring to matrix Equation 11, we will normalize the rows of the 

matrix and divide the elements of the y^(t^) vector by the length of 

T the corresponding row vectors of the Q, matrix. We will define the 

T 
normalized vector as and the normalized matrix as . The 

equation may be written as Equation I9. 

(19) 

The vector consists of the actual value of the vector and an 

error term and can be split into the two vectors, the actual value, 

y (tg) and error, e. Equation 19 can then be rewritten as Equation 20. 

+ [e] = Qj^^[x(t^)] (20) 

T Solving Equation 20 by taking the inverse of results in 

Equation 21. 

x(to) = [ya/to)] + (0%^) [s] ' (21) 

T 
Tvro items should be noted. First, the matrix O is square and 

invertible because we are considering only a single output observable 

system. Second, the elements of the e vector are not the actual measure

ment errors of the observations, but are modified by being divided by the 

T length of the corresponding row vectors of the Q, matrix. 

Equation 21 shows that the calculated state of the system is split 

into the actual state plus the error of the calculated state. The 

equation shows that this error is the linear combinations of the measure

ments errors -
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Let us consider the upper-bound error first. We will replace the 

elements of the e vector with the "modified upper-bound errors" for each 

measurement putting the usual plus or minus sign in front of each vector 

element. Since we are looking for the upper-bound error on the calculated 

value of each state-variable, we must select the signs of the elements in 

the e vector to yield the maximum calculated error. Since the calculated 

error is a linear combination of the observation errors, the calculated 

error turns out to be the sum of the absolute values of the row coeffi-

ij -1 
cients of ) when each coefficient is multiplied by its respective 

observation error. If we let the elements of the e vector be equal, we 

see these elements will cancel when the ratio for the degree of observ

ability is calculated. We are left with a single number which is our 

degree of observability per state-variable for the upper-bound error. To 

shorten this name we will call it upper-bound observability. To recapitu

late, the upper-bound observability for a state-variable is the inverse of 

the sum of the absolute values of the coefficients ,in the corresponding 

, T\-l 
row in the (Q^ ) matrix. 

To find the corresponding degree of observability per state-variable 

when standard deviation is used as a measure of error, we will refer to a 

theorem from statistics found on page 126 of Lindley (21). The theorem 

states that the variance of the linear combination of independent random 

variables is the sum of the coefficients squared multiplied by the 

respective variances of each random variable. The standard deviation is 

then the square root of the variance. Applying this theorem to our case, 

we know that the calculated error is a linear combination of the measure

ment errors. Therefore, the calculated error is the sum of the 
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T "1 coefficients squared in the row of the (Q,^/) multiplied by the variance 

. T. -1 
of each measurement. An expansion of (0 ') will show this condition. 

Again when the ratio is taken to find the degree of observability per 

state-variable, we find that, if the variances in the e vector were all 

made equal, they would cancel. Therefore, the degree of observability per 

state-variable based on the standard deviation is then the reciprocal of 

the square root of the sum of the coefficient squared in the respectively 

T -1 
rows of the ) matrix. To shorten the name we will call it standard-

deviation observability. 

At this point a simple example will be given to make the preceding 

discussion clearer. Consider the following system. (Figure l). 

The state-variable formulation is given by Equations 22 and 23. 

(22)  

-12 3 ^1 9 0 

3 -4 
^2 

0 1 
^2 

y = [0 1] 

step 1: Form the Q, matrix as specified by Equation 5. 

S = [l -g] 

step 2; Normalize the columns of the Q, matrix. 

rO 0.6^ 
'-1 -0.1 

T Step 3: Form the Q,^Q,^ matrix. 

0 0 T _ r '3G -

(23) 

(24) 

(25) 

(26) 

step 4: Find the eigenvalues and the corresponding eigenvectors. 

(For procedure, see Ralston (28) Chapter 10, pages h8Y-k99-) 
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Figure 1. Circuit for simple example 
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—  0 . 2 ;  -

^2 ~ 1 • 8 j Ug 

(27) 

(28) 

3//l0j 

i//io| 

-i/yio 

3//10 

The observability function is the smallest eigenvalue which has a 

value of 0.2. Since there are only two columns in the Q matrix, the sum 

of the eigenvalues is two. Since the "most observable" system would have 

both eigenvalues equal to one, we can gain an idea of the observability of 

this system by comparing the observability function value of 0.2 to the 

value of one. By examining the eigenvector associated with the 0.2 eigen

value, we see that the state-variable, x^, is less observable than the 

state-variable, Xg. This result is very satisfying because x^ iJ measured 

directly while x^ has to be calculated. 

Proceeding with the rest of the example. 

T 
Step 5: Find the inverse of 

4/3 5/3 

1 0 

Step 6: Form the degree of observability per state-variable for each 

type of error. 

Upper-bound observability; 

For state variable number 1 

|V3 |  +  1 5 / 3 1  "  3 "  

For state variable number 2 
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Standard-deviation observability : 

For state variable number 1 

^ T = 0.4685 
(4/3)2 + (5/3)2 2.134 

For state variable number 2 

(1)2 + (0)2  ̂

The upper-bound observability for says that the upper-bound error 

for x^(tg) will be three times the upper-bound error on the measurements oi 

y(t ) and y(t^) if the modified upper-bound error for each meas'urement 

were equal. 

The upper-bound error for Xg(t ) will be the same as the meas'uremsnt 

upper-bound error. Again, the result is very satisfying because x^ft ) 

is measured directly. 

By analogy, the standard-deviation observability for x, (t^) shows 

that the standard deviation for x_(t^) is 2.134 times the standard devia

tion on the measurements. Likewise, the standard deviation of Xg(t^) is 

tte same as the measurement standard deviation. 

This simple example does not show the advantage of the degree of 

observability per state-variable because the engineer can essentially gain 

all the needed information from the "most orthogonal" vector. However, 

later examples will be given where more than the "most orthogonal" vector 

will be helpful. 
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IV. DEGREES OF OBSERVABILITY PER STATE-VARIABLE FOR TI-IE GENERAL CASE 

We have yet to consider the systems with multiple outputs and systems 

which are not observable. In the case of the non-observable systems, we 

are interested in how observable the state-variables are which can be 

observed. For the multi-output system the Q matrix is not square. In the 

T preceding discussion, we took the inverse of the Q, matrix; however, for 

T 
both cases presented above the simple inverse of the matrix cannot be 

found. 

The answer to the above problem is the generalized inverse (frequently 

called peusdo-inverse). E. H. Moore (22) discovered the generalized 

inverse in 1920. It was rediscovered independently by A. Bjerhammar 

(3, U) in 1951 and by R. Penrose (25) in 1955- T. N. E. Greville (l5, l6), 

in papers published in 1959 and I960, gives the information about the 

history of the generalized inverse. 

Only the essential features of the generalized inverse will be given 

here. Besides the papers already mentioned, further information may be 

obtained by referring to any of the following papers (l, 2, 10, l4, 23, 

24, 26, 27, 29, and 30). 

Consider the matrix Equation 29. 

Tz = b (29) 

Let us assume first there are more rows in T than in z but with the rank 

of T equal to the number of elements in z. In this case, there is the 

possibility of conflicting data in the b vector. The generalized inverse, 

written as T , would yield a vector z which would be the best fit to the 
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data in tiie least squares sense. The vector z is specified as given ii. 

Equation 30. 

= T*b (30) 

The best fit in the least squares sense is specified by Equation 31-

I I Tz - b II g 11 Tz - b I I ; for any z (31) 

The double lines denote the commonly defined length of tiie vector. 

If the rank of T is less than the number of elements in tne vector z 

or if there are fewer rows in T than elements in z, there are many vectors, 

z, which will fit Equation 31. For this case the generalized inverse will 

yield the z^ whose length is shorter than all other z which will fit 

Equation 3I. This condition is described by Equation 32. 

II Zq 1 I ^ M z I I ; for all z (32) 

To be more precise mathematically, the generalized inverse is 

frequently defined by Penrose's (25) four equations given by Equations 33, 

34, 35, 36. 

TT T = T (33) 

+ + + . 
T TT = T (34) 

(TT*)̂  = TT̂  (33) 

(T̂ T)̂  = T'̂ T (34) 

The superscript H stands for the hermitian of the matrix and indicates that 

the matrix with the superscript is the complex conjugate transpose of the 

matrix without the superscript. Penrose has shown that these four 

conditions will always define a unique generalized inverse. 
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Zadeh and Desoer (33) has an interesting diagram on page 57^ of their 

book which points out an interesting property of the generalized inverse 

concerning its null space. The null space of a matrix is defined as the 

set of all vectors z such that the product of the matrix, T, times the 

vector z is equal to zero. The diagram shows that the generalized inverse 

will never transform anything into the null space of the original matrix. 

Zadeh and Desoer (33) also presents a method of finding the general

ized inverse of pages 58I-582. This was the method used in the computer 

program implementing these techniques because part of it is similar to the 

work which has to be done to find the observability function and "most 

orthogonal vector". 

The method is as follows. Let the matrix S be the hermitian non- _ 

negative definite matrix defined by Equation 35. 

S = T̂ T̂ (35) 

Let U be the matrix whose columns are the normalized eigenvectors of S so 

that the diagonal matrix D of the eigenvalues results when the similarity 

transformation given by Equation 36 is performed. 

D = U"VJ (36) 

In this case, since U is an orthonormal matrix, the hermitian of it is 

equal to its inverse. 

The generalized inverse of the diagonal matrix D is the diagonal 

matrix D whose diagonal elements are the reciprocal of the corresponding 

elements in the D matrix. If a diagonal element in D is zero it is left at 

-f* 
zero in the D matrix. The generalized inverse of the matrix T is given 

by: 

t"*" = UdV̂ T̂  (37) 
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It should be noted here that for real matrices the herraitian of the matrix 

is equal to the transpose of the matrix. 

The last property to note about the generalized inverse is the fact 

that it becomes the inverse of the matrix when the matrix is square and 

non-singular. 

With all the properties that the generalized inverse possesses, it 

fits very well into the scheme of things for the multi-output and unob-

T servable system. We will always take ûhe generalized inverse of in 

place of the inverse and proceed as described in the preceding section for 

calculating the degree of observability per state-variable. 
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V. IMPLEMIÏNTATION ON TU'i; GO?&%'Tr:R 

A coiapubcr program was written to calculate 'cac ooGorvaoility func

tion, "most orthogonal vector", upper-bound observability, and standard-

deviation observability. Two linear systeras for which the results were 

known were checked with the criteria developed in this thesis. The pro

gram was written in BPS Fortran and runs were made on the IBM 360 Model 50 

computer in use at Iowa State in the Fall of I966. 

The Fortran program is given in Appendix A. The program is quite 

straight fonvard and follows the preceding development. The program used 

for the calculation of the eigenvalues and eigenvectors of 0„.Q- is due zo 
A  A  

the method by Jacobi found in Ralston (28). It is a slight modification 

of the program from the computing system library. The subroutine Fortran 

program is given in Appendix A. One of the disadvantages of this method 

is that the zero eigenvalues do not come out to be identically zero but 

are left at some small number. Therefore, a threshold has to be calculated 

to determine when the eigenvalue should be zero. 

The generalized inverse is calculated as discussed in Chapter IV of 

this thesis by the method given in Zadeh and Desoer (33). To check on the 

accuracy of this method, a method of calculating the generalized inverse 

given by Rust, B'orrus, and Schneeberger (30) was programmed. The method 

due to Zadeh and Desoer gave poor accuracy until the double precision 

feature of the computing system was employed. The modified Fortran pro

gram due to Rust, Burrus, and Schneeberger is. given in Appendix 3. 
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VI. DISCUSSION OF RESULTS 

Variations of two different systems were used to calculate observ

ability functions and degrees of observability. The first is an inertial 

navigation system due to Bona (5). The second is an inertial navigation 

system due to Brown (8), 

The A and C matrices of the system due to Bona are presented in Table 

1. The values of the numbers are presented in Table 3- This sysôem was 

first checked with the last three state-variables eliminated; and finally, 

with all nine state-variables present. The results are shown respectively 

in Computer Output Number 1 and 2. All eigenvalues of the matrix 

are presented in Computer Output Mmber 1. Because of the large mass of 

data, all the other Computer Outputs are abbreviated with only the perti

nent data being presented. 

Observing Computer Output Number 1 for the reduced Bona system, we 

see first that it is unobservable because of the zero value in the observ

ability functions. Observing the eigenvector for the zero eigenvalue, we 

also see that state-variables numbered three, five, and six are unobserv

able because a component of the eigenvector is in the direction of each of 

these state-variables. 

For state-variable number 1, we find the value of both standard-

deviation observability and upper-bound observability to be unity. This 

value indicat-s that the error of the calculated state is the same as the 

observation error. The reason for this result can be found by examining 

the C matrix in Table 1. State-variable number 1 is measured directly. 
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Taole 1. The A and G matrix from system clue to Bona (5) 

r 0 
! 

"z 
0 a 0 0 a 0 0 

-Q 
z 

0 0 a 0 0 a 0 

0 0 0 a 0 0 a 

0 0 

CD
. 

I 0 0 0 0 0 

' 0 0 0 0 32 0 0 0 0 

I 0 0 0 0 0 
'^3 

0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

_ 0 0' 0 

A 

0 

matrix 

0 

(9 

0 

X 9) 

0 0 0 

0 0 0 0 0 0 0 0 L° 1 0 

G 

0 

matrix 

0 

(2 

0 

X 9) 

0 0 0 
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Table 2. The A and C matrix from system due to Brovm (?) 

" 0  0  O O O O O u ;  0 0 0 0 0 0 0 0  
z o 

- n o  n o o o o o  u i o o o o o o o  
z z o 

0 - 0  0 0 0 0 0 0  O u j O O O O O O  
X  o 

0 0  O O w O O O  0 0 0 0 0 0 0 0  
o 

-W 0 0 0 0 20 0 0 0 w 0 0 0 0 0 

0 0  0 0 0 0  c j  O  0 0 0 0 0 0 0 0  

0  -  l o  0  0  -  2 0  — u j O G  . 0  0 0 ( 1 ) 0 0 0 0  o z o o 

0 0  o o o o o - g  o o o o o o o o  

0 0  0 0 0 0 0 0  - P  0 0 0 0 0 0 0  

0 0  0 0 0 0 0  0  O - c O O O O O O  

0 0  0 0 0 0 0 0  0 0 _ o ^  0 0 0 0 0  

0 0  0 0 0 0 0 0  0 0 0  - A  0 0 0  

I 

V 

0 0  0 0 0 0 0 0  0 0 0 0  - B ^  0 0 0  
G  

0 0  0 0 0 0 0 0  0 0 0 0 0  - 3  0 0  
7 

0 0  0 0 0 0 0 0  0 0 0 0 0 0 -

0 0  0 0 0 0 0 0  0 0 0 0 0 0 0 -

A matrix (l6 x l6) 

F o o  0 0 1 0 0 0  0 0 0 0 1 0 0 0  

0 0  0 0 0 0 1 0  0 0 0 0 0 1 0 0  

C O  C O O O O O  0 0 0 0 0 0 1 0  
M-x (iy |iz 

C C  C O O O O O  0 0 0 0 0 0 0 1  
vx vy vz 

0 0  0 1 0 0 0 0  0 0 0 0 0 0 0 0  

0 0  0 0 0 1 0 0  0 0 0 0 0 0 0 0  

C matrix (6 x lo) 
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Table 3- Values used in the calculations 

"x 
= 0.5156 X  10" 

Q 
z 

= 0.5156 : X  10" 

a. = 1.0 X  10"^ 

<^0 
= 0.124 X  10-2 

^1 
= 0.278 X  10"^ 

^2 
= 0.278 X  10-^ 

^3 
= 0.278 z icT^ 

^3 
= 0.278 X  10"^ 

^5 
= 0.278 X  10-'-

% 
= 0.278 X  10*3 

37 
= 0.278 X  10-3 

% 
= 0.556 X  10-3 

^ 9  
= 0.556 X  10-3 

C , C , C , C , C , C are functions of time 
vx' vy' vz 

and are defined in Appendix C. 
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IS S E R V A B I L I T Y  F U N C T I O k S  
c  .0 0 . 1 5 1 7 0  -01 0. 2210C-01 0.45290 CO 
c  .55370 01 0.5S67D C 1 
,T A T E  VARIABLE : NO. ON L t;F 1 y Ai KG -1\ 

S I X  S M A L L E S T  E I G E A V A L L E S  H  A S S O C I A  TEC E Z G E N V E  C T O  RS 
OaOZRlo 

1 C.O 0 «. C C C 6 5 0.C013S 0.64027 C .76815 C .00 140 
2 c « c 0.C6S27 -0.06539 0.00024 -C .00196 G .99386 
3 -C.16830 0.04227 0.06171 0-75494 -c .62941 -0 .00116 
4 C.O -0.27201 0.957C9 -0.03791 G .02993 0 .06746 
5 C.867S2 -0.44761 -0.12122 0.135C6 -C .11205 0 .03197 
c C.46751 0.24611 0.24734 0.02104 -c .01859 -0 .05977 
E GREE OF CSSE R V A G I L I T V  P E R  S T A T E  V A R I A B L E  

S T A K C A X D  U P P E R  G  B S E R V E D  e u  T P U T  N C .  A,\C P R O P C R T  IC,\ AL 
DEVIATION B O U N D  P  ART OF THAT V A L U E  I F P A R T  IS OVER 0.1 

1 l.CCOO l.CCOO ( 1 ç 1 » c û } 
2 1.C634 0.59S9 ( 2, 0.53)( 4,-0.16/ 
3 NO: OBSERVA G L E  
4 0.1469 0.0700 { 2,-0.31;( 3, 0.31 S ( 4, 0.12)( .5 s--0.12)_ 
5 NOT OBSERVA BLE 
6 N O T  O B S E R V A  B L E  

Computer Output No. I. Bona's system with state variables no, "J, Q, 9 
omitted 
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O B S E R V A B I L I T Y  
C .0 
0.29790-01 
0.89350 Cl 
STATE VARIABLE i\C 

S IX S M A L L E S T  

F U N C T I G h S  
C.O 
Û.3755D-0: 

0.11270-02 
0.4861D 00 

0.1476C-02 
C.85CSC 01 

, O N  L E F  
E I G k N V A  

T  M A R G I N  
I!:- < 1,1 1  I  

2 
3 
4 
5 
6 
7 
3 
9 

C.G 
C.O 

-C.168C6 
C.O 
C.86786 
C.46753 
C.O 

-c.cc: 
c. 

1 5 J i 

C.G 
C.C 

-0.18532 
0 . 0  

-0.02667 
-C.C1437 
0.0 
0.98221 
O.C 

C. 
• G. 
G, 
-C 
• C 
C, 
0, 
G. 

• 0 .  

02677 
12075 

HP CBSERV; 

12705 
00519 
72540 

LITY PER STAT! 

— u 
—G 
-0 
— G 
G 

-G 
G 

-G 
0 
VA 

STANDARD LPPER 
D E V I A T I O N  B O U N D  
l.CCCO l.GOCG 
l.COCO l.CCCO 

NOT OBSERVABLE 
C.C554 C-C262 

N O T  O B S E R V A B L E  
NOT OBSERVABLE 
C.C512 C.C2C6 

NOT OBSERVABLE 
0.C446 C.Û126 

O B S  
P A R  
( 1 
( 2 

RVED C U T P U  
CF THAT V 
1 . 0 0 )  
1 . 0 0 )  

S S O C Ï A T  

.00005 

.00417 

.03249 

.66380 

.C2638 
«. G ô 0 6 6 
.72325 
.00630 
.17548 
RI A B L b 
T NC. A 
ALUE IF 

EC E I G E N V E C T O R  

0.0CC98 

0' 

0.13043 
0.03180 
-0.09471 
-0.33796 
0.63880 
-U.17597 
0.00617 
0.64785 

m 
0.0C16C 

-0.1G372 
0 . 0 4  1 1 1  
0.72549 

-0.06518 
0.13580 
0.64864 
0.CC797 
0.13312 

NC PROPCRTICNAL 
PART T  <  O V E R  0 ,  

( 4, 0.31){ 5,-0.31)( 6,-0.12)1 7, 0.12) 

{ 2,-0.11)( -> j 0.11 ) î 4,-0.24) ( 5, .24 ) 

( 4, 0.15) : 5 9 0.15) 

Computer Output No. 2. Bona's full system 
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For state-variable number 2, we find the value for the standard-

deviation observability to be greater than unity. An exarrdnation of the 

C matrix in Table 1 reveals that this state-variable is also measured 

directly but the error in the calculated state variable is less than the 

measurement error. The calculated error is less because information from 

more than one observation is used in the calculation of the state variable 

with the result tliat the upper-bound error observability is much less than 

unity. We must remember that the generalized inverse was used to obtain 

these degrees of observabilities and that it optimizes in the least square 

sense. In other words, it gives us the largest value for the standard-

deviation observability, but not for the upper-bound observability. 

State-variable number 4 has a standard-deviation error 6.8 times the 

standard-deviation error in the measurement. 

Examining the results of the full Bona system reveals that state-

variable number 2 is determined only by the direct measurement on it 

instead of a number of measurements as was the case in the reduced Bona 

system. 

The sixteen state-variable system due to Brown was run with various 

combinations of the output terminals being observed. The combinations of 

outputs being observed are listed at the top of each Computer Output 

Number 3 through 13. 

When outputs number 3 and k were observed, special difficulty was 

encountered in the formation of the Q matrix because the C matrix contains 

time varying functions. The derivative of each function had to be taken 

15 times. The derivatives were formed on the computer by algebraic means 
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rather than by numerical techniques. The details of how this was done is 

given in Appendix C. 

A better feeling for the various criteria for the degrees of observ

ability can be obtained by studying the Computer Outputs Number 3 through 

13. Since the Computer Outputs are fairly straightforward, no further 

discussion will be given here except to explain how the number of the out

put is specified. 

In the lower right hand part of the Computer Output, the first nura.ber 

inside the parenthesis is the number of the system output observed. The 

numbers 1 through 6 are the direct observations, the numbers 7 through 12 

are the observations of the first derivative of the system outputs 1 

through .6 respectively, and so forth, for the rest of the output numbers. 
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OBSERVED O U T P U T  NOS.1,2 
O B S E R V A B I L I T Y  F U \ C T I C K S  
0.0 c. c 0. C 0.0 
0.0 c. 0 0. 107 70-07 0.3 128C -04 
0.42 ;4riD-02 0. 4 7200-02 C. 71980 00 0.72050 00 
0.34320 C 1 0 . 3 4 3 3 0  0 1  0 .  11340 02 0.11840 02 

STATE : VAR l A B L  t NO. O N  LEFT M A R G I N  
S I X  SMALLEST EIGENVALUES 'AITH ASSOCIATE 0 E I G C N V k C T C R S  

QjlLL _a 0 iijiD 
I 0.0 0.0 -C.00017 0.00030 0 .41260 —  C .  / C 3 S 6  
2 C .0 0 . 0 C.00C26' 0.7064 1 ' -C .00020' 0.0C0 18 
3 C .0 0.0 0.99689 -0.0003 7 0 .00093 -0.00157 
4 C .0 0.0 -0.00017 -0.00007 C .40359 0.7C944 
5 0.0 0.0 0.0 -0.00000 G -C 0 . C 
6 c.o 0.0 0.0 0.00000 0 .C 0.0 
7 C .0 C-C 0.0 0.0 0 .0 0.0 
a C = 0 •" " 0.0 ""-0.00000 -0.02936 -0 .01629^' "•-Û.CC013 
9 c.o 0.0 -0.04 155 -0.015G1 0 . 0 1 7 1 2  .-G.C2921 
10 c.o o.c '-0.02238 0.02938 -C .00908 — O.Oljciâ 
1 1 c.o 0.0 -C .00035 0.00023 u .81619 0.00549 

12 c . o  0.0 0.00026 0.70641 - 0 .00020 O . O O O l d  
13 c . o  0.0 0.0 0.00000 0 .0 0.0 
14 c.o 0.0 0.0 0.0 ' 0 . c ' 0.0 
15 c . o  i . c c c o o  C .0 0.0 0 . 0 U . C 
16 i . c c o c o  0.0 0.0 0.0 . Û .0 C.o 
DEGRE L OF CBSERVABILI TV ' PER STATE VARIABLE 

S T • A: :< ' C i h S H i< y 1: I / uU rrnjf no. an PitO/'UN T : u \ A L  

L VIA? I 0.; J P "\Rr ÙF TiiA r  V A L U E  I F  :<T IS ij < 0 . 0 5 

2 
3 
4  
5  
6 
7  

8 
9  

10 
11 
1 2  
1 3  
1 4  

1 5  
16 

N O T  
N O T  
N O T  
NOT 
N O T  
M O T  

N O T  
N O T  
N O T  
N O T  
N O T  •  
N O T  

O B S E R V A B L E  
O B S E R V A B L E  
O B S E R V A B L E  
O H S E K V A B L H  
O B S E R V A B L E  
O B S E R V A B L E  

0290 0.0090' 

O B S E R V A B L E  
O B S E R V A B L E  
O B S E R V A B L E  
O B S E R V A B L E  
O B S E R V A B L E  
O B S E R V A B L E  

(  1 3 , - 0 . 1 0 )  ( 1 4 , - 0  
( 3 8 ,  Û . C 5 )  

,25 ) (20, 0.07) ( 26',-O .Ob ) 

0.0290 C .0091 ( 1 3 ,  0 . 1 0 ) ( 1 4 ,  
( 3b ,-0.05) 

0.25)(20, •0,07 ) (26,^0.08 ) 

N O T  O B S E R V A B L E  
N O T  O B S E R V A B L E  

Computer Output No. 3« Brown's system observing output no. 1 and 2 
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OBSERVED OLTPUT NCS.5,6 
OBSERVABILITY FUNCTIONS 
O.C O.G 0.0 C.O 
0.0 c.o 0.0 0.4772C-C3 

" 0.44430 CC C.44 540 CO 0.6253C 00 0.62580 CO 
0.3691D 01 0.36920 01 0.11240 02 0.11240 02 

STATE VARIABLE NC. ON LEFT MARGIN 
SIX SXALLHST EIGENVALUES UITH ASSCCIATED EIGENVECTCRS 

iiiii L^J^L DjiD 
_l _ C.O __ C.C _ c.o 0.0 -0.C0G2% O.OCOIS 
2 C.O " "C.C 0 .0 " ' 0.0 0.00047" 0.7 064 1 
3 C.O 0.0 0.0 0-0 0.99889 -0.CCC66 
4 C.O 0.0 • 0.0 0.0 0.0 0.0 
5 C.O 0.0 0.0 ' 0.0 0.0 0.0 
6 C.O • 0.0 C.O ' ' 0.0 0.0 0.0 
7 C.O O.C C.O 0.0 0-0 0.0 
8' 'C-O" O.C 0.0 C.o '"' -0.00001 -0.0293c 
9 C.O 0.0 0.0 C. O  -0.04156 - O . O L S O O  
10 C.O 0.0 "0.0 0.0 -0.02237' 0.02939 
11 C.O O.C 0.0 0.0 -0.00026 0.00019 
12 0.0 0.0 0.0 "" 0.0 0 .00047 0- 70641 
13 0.0 0.0 0.0 l.OOOOC 0.C _ 0.0 
14 0.0 0.0 1 .00000 " 0.0 ' 0.0 0.0 
15 0.0 1.00000 C.O 0.0 0-0 0-0 
16 l.OCOCO 0.0 0.0 0.0 0.0 0.0 
DEGREE OF CBSERVAbI LITY PER STATE VARIABLE 

STA\^Axn U//LK nasERvÊi; JurnuT NJ. /urn pRUPÔxliO jAL 
J  E  V  [  A  R  ;  1  H J  H A K L "  O F  T H A I '  V A L U E  I F  P A R T  F S  C V ' E R  0 . 0 5  

1 NOT OBSERVABLE 
2 NOT OBSERVABLE 
3 NOT OBSERVABLE 
4 1.COCO 1 .COCO ( 5 7 1.00) 
5 1 -0001 ' 0.9743 ' ( 1 1 ,"0.97) 
6 1 .0000 0.9989 ( 6, 1 .00) 
7 1 -0002 0-9542'"'ll2T 0.95) 
8 NOT OBSERVABLE 
9 NOT OBSERVABLE 

10 NOT OBSERVABLE 
11 NOT OBSERVABLE"' " " 
12 NOT OBSERVABLE 
13 NOT' OBSERVABLE 
14 NOT OBSERVABLE 
15 NOT OBSERVABLE '" '' 
16 NOT OBSERVABLE 

Computer Output Wo. k. Brown's system observing outputs no. 5 and 6 



www.manaraa.com

34 

OBSERVED OUTPUT NOS.1,2,5,6 
OBSERVABILITY FUNCTIONS 
0.0 
0.0 
0 . 6 4 4 3 D  CC 
0.70890 0 1 

S T A T E  V A R I A B L E  

0 . 0  
C . 93880-03 
C . 6 4 4 0 0  0 0  
0.70910 01 

NO. ON LEFT 
SIX S M A L L E S T  

0-0 
0 . 2 5 6 7 0  
0.93910 
0.2307C 

M A R G I N  
VilTH ASSOCIATED EIGENVECTORS 

00 
00 
02 

0.0 
0.257GC 
0.9406C 
0.2307D 

CO 
CC 
02 

il fl-ïû Q a^Cy94 
I -C.CCCG4 O.CCOIM 0.0 0.0 0 .70671 0 .00016 
2 C.7064 1 0.C0C46'" 0.0 o.o' ' ' Û .00004 '' -0 .00334 
3 — C.00066 0.99889 0.0 0.0 û .00096 0 .02228 
4 C.O o.u ' o.o"" "o.o C .0 -0 .0CC02 
5 C.O O.C 0.0 0.0 0 .0 -0 .00103 
6 C.O C.C 0.0 "o.o C .0 -0 .CCGC4 
7 C.O O.C 0.0 0.0 U .0 C .00 197 

'8' " -C.02937 ' '-0.CC002" ""'o.o' " o . o  "-0 .01585" 0 .00245 
9 -C.O 1581 -0.04 154 C.O 0.0 C .02935 -0 .00271 
10 C.02939 -0.02238 ' 0.0 o.o" — 0 .00002 0 .99898 
11 -C.C0CC4 0.CC016 0 .0 0,0 0 .70671 0 .0000 1 
12 0.70641 0.C0C46 ' o.u 0.0 0 .00004' -0 .038 16 
13 C.O 0.0 0.0 0.0 C .0 0 

O
 
o
 

14 C.O 0.0 "o.o " o . o  0 .0 -0 .00691 
15 C.O 0.0 0.0 1.00000 0 .0 0 .0 
16 C.O O.C 1.00000 0.0 • 0 .0 0 .0 
DEGREE OF OBSERVABILITY PER STATE VARIABLE 

sTMNCAi-.n OB ScRVEu OUT Pur X I; . AND y ON AL 
o l  V 1 A  i ; n,-i • UlU.iO P A:<r uF T H A T  VALU I: IF PART IS uV 0 . u 5 

1 NOT OBSERVABLE 
2 NOT OBSERVABLE 
3 NOT OBSERVABLE 
4 l.CCOO l.CCOO { 5, 1.00) 
5 " 1.C0 6 7 0.7567' ( 7, 0.08) (11, 0. 75 ) 
6 l.CCOO 0.9977 ( 6, 1.00) 
7 
8 

1.G052 
NOT OBSERV 

C.7737 (1 
ABLE 

2, 0.77) 

9 NOT OBSERVABLE 
10 NOT OBSERVABLE 
11 NOT OBSERVABLE 
12 NO! OBSERVABLE 
13 0.5905 0.3018 ( -i__o--^i-)-(- 'l'ollï 1 f " - o . ' 2'9') 
14 0.5856 0.3279 ( 2j__0 .45 ) ( 8 , -0 . 06 ) ( 12,--0 . 32)(1 8,_ 0.06) 
15 NOT OBSERVABLE 
16 NOT OBSERVABLE 

Computer Output No. 5> Brown's system observing outputs no. 1, 2, 5 and 6 
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OBSERVED OUTPUT NOS.1 , 2 , 3 , 4  TI^E = 6:10 A.X. 
OBSERVABILITY FUNCTIONS 
C.29C0D-C5 0.29260-05 0.18620 00 0.26440 CO 
0-476 00 00 0.826bD CO 0.918 9 0 00 _ 0.97700 CO 
0.13301) 01 0. 159 LO' Cl 0 . 3 9 7 7 0  01 ' 0.46090 CI 
0.11330 02 0.11810 02 0.12560 02 0.13130 02 
STATE VARIABLE NG. ON LEFT MARGIN 

SIX SMALLEST FIOtNVALUES WITH ASSOCIATED EIGENVECTORS 

£ C C D O Q  0, D Û. , 4 2 5 9 1  
1 c .coccc -0. C C C C 4  0 .00351 0 . 1 1 9 0 6  -0 . 0 1 3 6 1  0 . 0 3 7 4 2  
2  c .COG CO' -0. c c o o o  ' -0 .00562 "-0 . 0 0 2 2 ( 1  " -0 . 0 0 6 9 0 "  ' -0 . 0 0 9 / 5  
3 -c .00001 0. cococ 0 . 0 0 3 1 9  -0 .01637 0 . 9 9 5 7 3  0 . 0 5 6 3 6  
4  • c . 1 3 0 7 7  0. 6 9 4 3 4  -0 .04217 -0 . 0 9 5 9 2  "" 0 . 0 0 5 9 3  -0 . 0 2 4 7 %  
5 -c .00267 -0. 01525 -0 . 0 0 0 9 5  — 0 . 4 2 4 2 0  -0 .00195 -0 . 0 2 2 6 5  
6 " c .69432 ' -0. 13077 ' ""-0 . 0 2 D 7 2  0 .05361 0 .00543' "• 0 . 0 2 6 1 5  
7 -c .01513 0. 0 0 2 6 7  -0 .50189 -0 . 0 0 0 5 7  -0 . 0 0 1 6 8  _ _ 0 . 0 2 3 8 0  

"a" "-C .COCCO " -0. 0 0 0 1 3 ^  '"'o .01195 0 . 2 8 6 3 5  -0 . 0 0 2 6 6  '  0 . 0 2 3 7 2  
9 -c .00026 -C. ccoco 0 .40996 -0 . 0 0 9 0 4  -0 . 0 4 3 1 0  -0 . 0 3 6 4 0  

1 0  -c .C0CC4 0. cccoi -0 .0 1170 0 . 0 0 7 3 1  -0 . 0 5 / 6 9  0 . 9 9  1 6 0  
1  I 0 .132C7 0. 6 9 4 9 C  0 .04161 0 .06864 -0 .00647 0 . 0 2 5 0 7  
12 c .69492 -0. 13207 0 .00183 -0 . 0 5 2 9 3  -0 . 0 0 5 8 2  -0 . 0 2 6 6 5  
1 3  c . 0 0 2 6 C  0 . 0 1485 0 .01009 0 . 8 3 6 0 2  0 . 0 2 2 6 7  -0 . 0 4 0 3 4  
1 4  ' 0 . 0 1 4 7 3  " -0. 00260 • " 0 .75532 ' " - 0  . 0 1 9 0 6 '  0 . 0  1 7 1 9 "  0 . 0 4 9 1 7  
1 5  -c .COOOl -0. 0 0 0 0 0  0 . 0 1 2 7 1  0 . 0 0 6 2 9  0 .00039 -0 . 0 0 5 7 4  
1 6  0 .00000 "'-0. 0 0000 -0 .00705 0 .00801' -0 .04535 ' 0 . 0 4 1 7 4  

Computer Output No. 6. Brown's system observing outputs no. 1, 2, 3, k 
Time = 6:10 AM 
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DEGREE OF OBSERVABILITY PER STATE VARIABLE 
STa^A/D K o'rtbtKVtL' OUTPUT NIJ. Ai'iO PKuPwK i I G'.jAL 
OFVl \1 hUU-iO _J:)ARr_nF_ THAT, VALU::. ij__ |.\\RT__i.S....,VcR.n.U5_. 

1 1.4103 0.53 8 0 ( 3, 0.19)( 9» 0.11)(82, 0.2j)(28,-0.20) 
2 1.5574 0.7600 (75,-0.08)(81,-0.30)(87, 0.23)(93, 0.29) 
3 0.6916 " 0.3941'^( 4, 0.56) 
4 0.0024 0.0007 ( 1,-0.05) ( 7,-0.26) (13, 0.07) (19,-0.06 I 

'5 '0.1097 "0.0 378 "( 1, 0.06)( 7, 0.30)(13,-0.09)(19, 0.07) 

6 0.0024 C.C0C7 ( 2,-0.05)( 8,-0.26)(14, 0.06)(20,-0^06) 
~~7 0.1097" 0.0 3 77 ( 2 , 0.06 )( 8,"0.30) (14,-0.09) (20, 0.07) 
8 1.2014 0.4909 ( 3, 0.09)1 9, 0.31)(82, 0.11)(94,-0.22) 
9 "0.854 6 0.3290'"(15,-0.08) (16, 0.08) (81,-0.10 (87,-0.32) 

(93, 0.1?) 
10 0.9093' 0.5338 ""(10, 0.58) 
11 0.0024 0.0007 ( 1,-0.05)( 7,-0.26)(13, 0.07)(19,-0.06) 
12 0.00 24 0.0007 ( 2,-0.05)( 8,-0.26)(14, 0.06)120,-0.06) 
13 0. 11 13 0.0400 ( 7 ,-0.31) (13 , 0 . 09 ) ( 19,-0 . C7) (3 1, 0.05) 
1 4 0.1113 C.0398 "( 8,-0.31) (14, 0.09) (20,-0.07) (3 2, 0.05) 
15 3.3411 0.8524 (15, 0.07)(21,-0.08)(27, 0.08)(33,-0.08) 

- (39, 0.08) (45,-0.08) (51, 0 .08) (57,-0 .08) 
(63, O.OB) (69 ,-0.08) (75, 0.07) 

16 "3.3T05" 078972 "( 16,' 0.07)122,-0.08 ) (28, 0.08) (34 ,-0 .08) 
(40, 0.08) (46,-0.08 ) (52, 0.08) (58,-0.08) 

' (64, 0.08) (70,-0.08) (76,"0.08) 

Computer Output No. 6 (Continued) 
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OBSERVED OUTPUT NOS.1,2,3,4 TIPE = 8:C0 A.P. 
OBSERVABILITY FUNCTIONS 
C.2CC6D-C7 0.26150-05 0 . 2 5 6 8 0 - 0 4  0 . 2 S 7 9 0 - C 1  
0 . 2 0 7 3 0  0 0  0 .  3 1  2 4 0  0 0  0 . 4 5 S 5 C  0 0  0  . 6 3 4 1 0  0 0  
C.8992D 00 0.96240 00 0.35610 01 0.36910 01 
0.11930 02 0.12010 02 0.14620 02 0 . 1 4 6/0 02 

S T A T E  VARIABLE NO. ON LEFT M A R G I N  
SIX SMALLEST EIGLNVALUES WITH ASSGCIATEC EIGENVECTORS 

£ ,  C C G 0 4  D Q. A J I 2 4 1  
1 -0 .09862 — 0. 002 13 0 .27752 — 0 . 0 1 4 6 9  -0 . 0 0 4 2 3  — 0 . 7 3 3 3 9  
2 -0 .24156 "- 0. 00534 " 0 . 6 7 9 8 3  ~'_0 . 0 0 2 2 0  ' "-0 .00497 "o . 2 9 9 0 0  
3 0 .09862 0. 00214 -0 .2 7754 0 . 0 1 1 9 1  G . 0 1 4 9 7  -0 . 0 0 1 8 0  
4  0 .53213 0. 4 8 6 56 0 .03560 -0 .01476 -0 . 0 1 5 2 5  0  . 3  9 9 1 2  
5 0 .00028 -0. 0 0 9 7 0  -0 . 0 3 4 8 8  -0 .17240 -0 . 4 6 3 6 2  -0 . 0 0 9 7 5  
6 -0 .3 3HC5 " 0. 51607 -0 . 4 9 8 5 8 '  -0 . 0 2 2 5 4  0 . 0 5 3 8 7 "  -0 . 1 6 2 1 3  
7  0 .0 04 74 -0. 0 0 9 8 5  0 .01694 -0 . 5 3 2 6 7  0 . 1 4 3 4 7  0 . 0 0 5 5 1  

"'a' "o .00000 -0. 0 0 0 6 6  -0 .0 00 23" 0 . 1 7 9 5 6  " 0 . 3 6 1 6 9  o' . 0 2 0 0 0  
9 0 .00001 -0. 0017 / 0 .00127 0 . 5 2 2 0 2  -0 .12395 — 0 . 0 0 6 2 /  

1 0  '•-0 . o o o c o "  0. 00066 ^-0 .00031 -0 . 2 1 2 7 3  0 .00130 
^ 

. 0 1 9 0 4  
1 1  0 .43302 0. 48575 0 .31394 0 .00931 -0 .01051 — 0 . 3 9 8 6 4  
12 -0 ,58070 0. 51044 0 .18015 " " 0  .00300 -0 .04528 0 . 1 6 2 7 7  
1 3  -0 .00028 0. 00945 0 .03400 0 .17597 0 .74430 0 . 0 0 3 2 8  
14 -0 .0 04 74 0. 00959 -0 .01613 0 .5515 3 -0 . 2 4 2 0 2 '  -0 . 0 0 1 0 8  
1 5  0 .00000 -0. 00003 -0 .00000 0 . 0 0 8 0 2  0 .01251 0 

. . . . .  
. 0 2 8 4 6  

1 6  - 0  . 0 0 0 0 0  0 .  00003 -0 .00001 — 0 .00865 "'-0 .00237' .00079 

Computer Output No. 7. Brown's system observing outputs no. 1, 2, 3> ^ 
Time = 8:00 AM 
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0 t 'u iK h  1 _ OF 0:: )S-itVA^[L [TY % STAIF V4 RI. •! uLz 
STA:^jDA'm U i  OBShRVFu ' J U r,)U r  :  ' j i i .  A x n  p;< i IlX'j A L  

_ U % '  ' V I A  r  i O j j  J 'V uj. j n  P ,< T JF THAT VALi ÏF n U  •  î . s  u v ' : ^  ; . u 5 
0« .C014 C .  . C C C 4  ( 8, 0 .07 ) (13, 0. .08 )(14, 0 .23)(26, " o  .07 ) 

2 0.0006 c .  .0002 ( 8, 0.07)(13, 0. .08 ) (  1 4 ,  0 .23)(26, 0 .07) 
3 " 0. C014 c .  0004 ( 8,--0.07) (13,--0. ,08 ) ( 14 , -0 .23 ) (26,^ -0 .07 ) 
4 0. ,0003 G. C O C l  ( 8,--0.07) ( 13,--0, .07 ) (  1 4  ,  -0 .22)(26,^ "G .07) 
5 0. 1056 C. 0324' (  1 ,  0.05)( 7, 0. 25)(13, — 0 . 09 ) ( 14,--0 .09) 

(19, 0.06 ) 
~6~ ~o". 0004 C. c c d T  (13, 0 .0 7 )Tl4," "o". '2'3T(20',' -o' Vo'6Tr26T "o' T o n  

(38,--0.05 ) 
1~ "o. 0291 C. C O  93' { 13 -0.08) ( 14,--0. 27 ) (20 , 0 .07)(26,--0 . 0 8 ) 

(38, 0.06)(50,--0. 05 ) 
' a~ "0. 6575 C. 2089" ( 9, 0.16)(15,-•0. 19 1(16, 0 .18) 
9 0. 3031 G. 0985 ( 9,--0.10) (15,-•0. 23)(16, 0 . 19 ) 
10 o". 5807 C -'184 a' (10, "0'.'20 ) ( 15", 0 . 1 5 )  ( 1 6 ,  -0 .17) 
ll_ 0. C003 C. CGOl { 7,-•0.05)( 8," •0. 07)(13, -0 .07)(14,- .22 ) 

(26,-•0.07) 
12 0. 0002 C. C C C I  ( 13, 0.07)(14, 0. 23)(20, -0 .05 ) (26, 0 .07) 
13" ' 0. 1071 C. 0339' ( 7,-•0.26) ( 13," 0. 10)(14, 0 .09)(19,-• 0  .06 ) 
14_ 0. 0292 G. 0095 (13, 0 . 0 8 ) (14, 0 .  27)(20, -0 .07) (26, _o_ .Q8J 

(38,-' 0 . b 6 ' ) ' ( 5 0 ' ,  o". 05 ) 
15 3. 6 5 6 3  0. 9196 (21,-•0.07) (27, 0 .  0 7  )  ( 3 3 ,  -0 .07)(39, 0 .07) 

(45,-• 0 . C 7 )  ( 5 i r  0. 07) (57,' -0 .07)(63, û .07) 
(69,-0.07)(75, 0. q72j8i ,• -0 'C7jj87j_ 0 . 0 7) 
(93,-0.07) 

1 6  3. 6422 C. 9185 (22,-0.06)(28, 0. 0 7_)_(_34,j -0_ .071(40 ,_ 0 .07) 
( 46 , - 0 .Cl') CbZ , 0 . 0 7 )"'( 58, - 0 /O T) ïùW, C.'oY) 
(70,-0.07)(76, 0.07)(82,-0.07)(88, 0.07) 
(94,-0.071 

Computer Output ÏÏo. 7 (Continued) 
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OBSERVED OUTPUT NGS.1,2,3,4 TIXE =10:C0 A.P. 
OBSERVABILITY FUNCTIONS 
0.11220-07 0.2712D-C5 0.37310-04 0 . 3 4 7 2 D - G 1  
0.22S1D OC 0.3I17D CO 0.41610 00 0.49220 CO 

" 0 . 1 0 C 6 D  0 1  C.1C16D"01 "o.36840'01 ~ 0 . 3 7 7 7 0  C I  
0. 1 1 9 8 0  02 0.12050 02 0 . 1 4 4 9 0  02 0.14510 C2 

S T A T E  VARIABLE NO. CN LEFT M A R G I N  
SIX SMALLEST EIGENVALUES WITH ASSOCIATED EIGENVECTORS 

Q .22216 £2, 

1 C .14 8 8 8 -0. C0082 -0 .51252 -c .00754 -0 .00188 -0 .50131 

2 C .12156 ' -0. CCC73 -0 .4 1848' ' 0 .00941' 'o .00071 c .61274 

3 -C -14888 0. C0082 0 .51258 0 .00963 -0 .04712 -0 .00140 

" 4 ' -c .29675 0. 66791 0 .19090" '"-0 .02341 -0 .009 14 " 0 .27126 

5 - c  .00169 -0. 01366 — c .02482 -0 .36312 0 .33286 -0 .01509 

6 c  .58065 0. 2 3 2 1 3  "• 0 .39380 -0 .01952 -0 405661" -0 . 3 3 1 2 5  

7 - c  .0033 3 -C. 00449 -0 .04037 -0 .35877 -0 .32597 G .00358 

"a" "-C . c c o c o  -0. 00100 "c' .00012 0 .36305" -0 .24232" • "o .01979 

9 - c  . o c c c u  — 0. 0CC89 -0 .00077 c .34550 0 .25433 -0 .01191 

10 c . o c o c i  0. c o l l i  " •" 0 .00015" -0 .44912' • " 0  .00088 " 0' .06551 

11 — c -14719 0. 66818 -0 .32104 0 .01033 0 .02821 -0 .27125 

12 c  .70284 " 0 . 2 30 53" -0 .02271 0 .00515" " 'o .03701 0 .33119 

13 c  .00169 0. 01330 -0 . 0 2 4 3 4  0 .37736 -0 .56691 0 .02501 

14 c  .003 3 3" " o . 0 0437 " 0 .03901 0 . 3  77 70 0 .5 74 79 • o' .01051 

15 - c  -OOCCO -0. 00002 0 .00001 0 .00740 -0 .00795 0 .C29 11 

16 0 .ccoco'" 0 . 000 03 -0 .00001 -0 .01142 0 .00607 ""0 .00164 

Computer Output Wo. 8. Brown's system observing outputs no. 1, 2, 3; ^ 
Time = 10:00 AM 
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OcG;<l:i: Oh 01 • S h .< V ̂  n [ L 1 •'Y S I ^ T L VARiABLr 
STANDAitO UPi'i" K ObSCRVEL OUTPUI' NO. ANil PRUPLr^T I UNA.. 
DEVI ATI ON rtiJU.-si) PAR F Uf- THAT VALUE IF PART I S uVcR 0.05 

1 "0.CG07 C.G0C2 ( 8V O.G5T(T3, O/ïôll 14, 0.15) (26, O.CSl' 
2 0.c009_ C.CC02 ( 8, 0.05) (13, 0.16) (14, 0.15) (26, 0.05) 

"3' 0.CC07 0.C002 ( 8,-0.05) (13,-0.16)(14,-0.15)( 26,-0.05) 
4 0.CC04 O.CGGl ( 7,-0.08)(13,-0.14)(14,-0.14)(26,-0.05) 
5 0.0539 0.0149 ( 7, 0.071 (13,-0.18) (14,-0.15) 
6 0.0002 C.CCGO (13, 0.16) (14, 0.16)(20^^0.05)(26, 0.06) 

" 7 0.0309 C.CG86 (13,-0.15) (14,-0.18) (20, O". 07 ) ( 26 ,-O". OôT 
8 0.4558 0.1301 (15,-0.22)(16, 0.12)(22,-0.06)(93,-0.06) 
9 0-4752"" "0.1368 ( 9,-0. 14) ( 15,-0.20) (16, G.05)(22/-0.08) 

_ (94,-0.06) 
10' 0.3626' O.IGGO '( 9, 0.05)(10,^0.15)(15, 0.16)(16,-0.10) 

(22, 0.06) 
11 0.0007 CVCC'02" '7 ,'-G . 10 )'( 13,-0.12")'('l4 ,-0 . 13 )'( 26 ,-O".05")' 
12 0.0002 0.0000 (13, 0.16)(14, 0.16)(20,-0.05)(26, 0.06) 
13 "' 0.0540 0.0152"' ( 7,-0.08) (13, 0.18) (14, 0.15) 
14 0.0310 C.C087 (13, 0.15)(14,0.18)(20,-0.07)(26, 0.06) 
15 '3.6681 0.9164 ' (21,-0.07)(27, 0.07)(33,-0.07)(39,0.07) 

(45,-0.07) (51 , 0.07) (57,-0.0 7 )J 63,__G-0 7) 
(69',-0,07T'(75",~"0.0 7 )"(81,-0.C7 ) ( 87', 0 .06') 
(93,-0.07) 

16 3.6003 0. 8933" " ( 22 ,-0 . 05) ( 28, 0.07 ) (34 ,-0 . 07 ) (40 , 0.07) 
(46,-0.07)(52, 0.07)(58,-0.07)(64, 0.07j 
(70,-0.07)(76, 0.07)(82,-0.07)(88, 0.07) 
(94,-0.06) 

Com.pu"i-&}: Output No. 8 (Continued) 
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OBSERVED OUTPUT NOS.1,2,3,4 TIXE =12:10 P . M .  
OBSERVABILITY F U N C T I O N S  
C.77710-08 0.28710-05 0.42830-04 C.78C60-C1 
0.30610 CC 0.323CD CO 0.39440 00 0.45940 00 
0.14110 01 0.14670 01 0.42650 01 0.43620 01 
C.12C40 02 0.122CD 02 0.13330 02 0.13370 02 

S T A T E  VARIABLE NO. ON LEFT M A R G I N  
SIX SMALLEST EIGENVALUES KITH ASSOCIATED EIGENVECTORS 
Q  ̂ QQQ£Q Q.  Q Q.  ^30614 0 

1 C . 16439 0 . C 0 1 8 2  -0 .60857 0  ,00004 — 0 .06 777 -0 .04002 

2 ̂ " C . 0 1 0 1 5  " 0 .C C C 0 7  "-0 .03 756" -0 .020 7 7 0 .71667 "-0 .32626 

3 — c .1643 9 -0 .00183 C .60870 -0 .02106 -0 .05166 -0 .13073 

4 "-C .07044 c .70552 " 0 .30911 '0 .02233 0 .01176 -0 .02972 

5 — c .00249 -0 .01523 0 .00834 0 .40881 -0 .01538 0 .04182 

' 6 ~ • c .67742 " -0 .01264 0 .20104' "• 0 .00763" -0 .39845" " "0 . 1 4  1 1 9  

7 -c .00173 0 .00023 -0 .05320 0 . 0 2 4 4 8  -0 .14502 - 0  .32433 
-c . C G C  C O  -0 . 0 0 0 4 2  0  . 0 0 0 6 7  -0 .38548 " o  .01575 -0 .01473 

9  —c . O C C C O  -0 .CC002 -C .00028 -0 .01386 0 .07336 0 .18485 

10 c . c c o c o '  '  "c .CC064' '-0 .00125" ' " 0 .67967 ' 0 .10380 ""-0 .05008 
11 c  . 0 9 4 7 0  0  .70812 —0 -29763 -0 .00456 -0 .01261 0 .03167 

12 c  .68775"' -0 .0137 7' .16593 '"-0 .00603 0 .38717 ' -G . 1 6 5  7 9  
13 c  . 0 0 2 4 9  0 .01483 — 0 .00839 -0 .46762 0 .04943 -0 .079C6 

14 .00173 — 0 .CGC23' •" ~0 . 0 5 1 6 5 "  "-0 .03204 " o  . 35932 " „ . . _ 0  .82167 

15 - c  . c o o c o  -0 . C O O O l  0 .00001 -0 .00879 0 .02970 -0 .0 1327 

16 c . c c o o o "  0 .000 02 -0 .00005 " 0 .01694 Û .00 7 38 " 0  . 0 1 2 2 5  

Computer Output No. 9. Brown's system observing outputs no. 1, 2, 3, ̂  

Time = 12:10 PM 
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OLGRCr: 111- OhSLi^VAh [LI i'Y ITR STAFr VAKIAI^LL 
S T A N D Â K D  U [ V . . I <  T J B S T . R V R I ;  c u r p u i  U U .  A N D  P X O ^ ' Ù R :  I O W A L  
DhVlATIQiM PAK  F O F  T H A T  V A L U . :  I F  PART I S  UVER 0 . 0 5  

j 0,CC05~ C.CG02 " ( " ' 7 ,  " 0 . C 8  ) flsV 0.25"') (2Y, O.cYi 
2 0.C087 C.0026 ( 7, 0.08)(13, 0.25)(25, 0.06) 

""3" O.C005 " 0.0002 ( 7,-0.08 ) (13,-0.25) (25,-0.07) 
4 O.COU 0.0003 ( 7,-0.17) (13,-0.18) 

'5 '0.0337 0.0113 (13,-0.29)(14,-0.06)(19, 0.05)(20, 0.05) 
(25,-0.08) (37 , 0.05)(49,-0.05) 

6 OVCO'OI C.CCCC ("7, 0.08 )1 13, 0.2 57 (14, 0.05̂ (20,-0.05) 
(25, 0.07) 

7 0.0470 0.0118 ( 7,-0. 06) ( 8, O". 0 8 )'('13",-0 . 1 8 ) ( 14 ,-G . 06 ) 
(20, 0.06) (25,-0.06) 

' 8 0.668 8 ''0.17 60 (10,-0. 13) (15,-0.09) (82, O/O 8 Y (8 7 , - 0 .0 8 ) 
(93,-0.07)(94,-0.13) 

' 9 1752 35 0.43 72 "( V̂-O . 17 ) ("l6~,-"o7o"8 )T8 iV-0'. 0 6y('8 77-0 .057 
(88 ,-0.09) (93, 0.13 ) (94,-0. IC) 

1 0 0.3791 071255" (10,"0.28) (15, "O . 0 7 ) ( 2 2 , ' 0 . 0 5 ) ( 8 2,-070 7 ) 
(87, 0.05)(94, 0,10) 

11 0.CO 09 0.0003 (13 , 0 .2 6) (14,"O- 0 5)(19,-0.05) (20,-07c 5) 
(25, 0.07) (37,-0.05 ) (49, 0.05) 

12 0  7c"0 0 1  0 .  cco'o (' 77 0 . 0  8 " )  "  ( "l 3'f 0 . 2 5 )  (  1 4 ,  "o . 0 5  )  (  2  0 , - c7' 0  5  " )  
(25, 0.07) 

13 "0.033 7"' 0.0114" ( 1 3 ," 0 .29 ) "( 147 0 .0 6 ) ( 19 ,"-0.0 5 ) ( '2 C ,-0 . 0 6 ) 
(25, 0.08) (37,-0.06) (49, 0.05) 

14 ""0.0471" " 0.0720 "( 7 ,"0.06 ) ( 8 ,-b . 0 8 ) ( 13 0 . 18 ) ( 14 , "O". 06") 
(20,-0.06)(25, 0.06) 

1 5  3 . 5 0 4 2  C.8'72"2 (7 1 O". 0 7 )7 2 7", o7o 7 ) ('3'3 ,-0Vc"7")l"3"9', 0.077 
(45,-0.07)(51, 0.07)(57,-0.07)(63, 0.07) 

""" """ (69,-0.07) ( 75 , 07C 7 ) ( 8 1 ,-0.06) 
16 3.4429 0.8576 (22 ,-0.06) (28,__0.07) (34,-0.07) (40,_0.07) 

(46,-0.07) (52, 0707 ) (58 ,-0.07)764", 0 .07 ) 
(70,-0.07) (76, 0.08 ) (82,-0.08 ) 

Computer Output No. 9 (Continued) 
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UBSERVtD GUTPLT NOS.1,2,3,4,5,6 
OBSERVABILITY FUNCTIONS 

TIXE = 6:10 A, 

C.35920 00 
0.82860 CO 
0.21060 or ' 
0.11920 02 

STATE VARIABLE NO. UN LEFT MARGIN 
SIX SMALLEST EIGENVALUES WITH ASSOCIATED 

0.3468D CO 
0.47630 00 
0.17630 0 1 
0.1154U 02 

0.40720 00 
0.12540 01 
0.75270 01 
0.23630 02 

0.4356U CO 
0.13300 01__ 
0.7S92D 01 
0.24070 C2 

EIGENVECTORS 

£ .  4:. 35926 Q 

1 C .06922 0. 15323 0 .05939 0 .08495 -0 .00270 0 .01431 

2 ' C .00864 '-0. C2328 "" 0 .15421 -0 .05261 "-0 .00192 0 .00649 

3 -C .02117 -0. 02512 -0 .04053 -0 .01118 0 .99460 0 .05912 

4 (J .140C0 " 0. 27062' 0 .17285" 0 .41851 0 .02961 -0 .01865 

5 -C .06534 -0. 20581 0 .02526 0 .11117 -0 .00044 -0 .00472 

6 c .04144 '-0. C9033 " .5184 6 " -0 . 18456 ' 0 .02072 " 0 .03194 

7 — c .28415 0. 09564 0 .04376 0 .00462 -0 .00101 0 .00839 

8" c .06473 0 = 16701 0 .00628" -0 .09630" • '-"0 .00001 '0 .0 0814 

9 0 .25600 -0. 10420 -0 .06451 -0 .01859 -0 .04463 -0 .01404 

10 " " -c .00906 '  0. 01752 -0 .01555 0 .01349" " "-0 .05312 ' 0 .99614 

11 c .26197 c. 47583 0 .25394 0 .55161 0 .03228 -0 .00365 

12 c .07153 " "-0. 15886 '"'0 .7 5 5 53 -0 .23914 0 .02237 0 .00616 

13 c .20340 0. 67199 -0 .09024 -0 .62853 0 .01413 -0 .00839 

14 " c .83867 -0. 3 1630 -0 .14802 -0 .04 339' 0 .01655 0 .02139 

15 c .00767 -0. 00376 -0 .00095 -0 .00976 0 .00011 -0 .00425 

16 -c .00054 0. 01074 0 .00432 0 .00382 -0 .04535 0 .04045 

DEGREE OF OBSERVABILITY PER STATE VARIABLE 
S T > \ i \i U A K 0 
DE VI A r 1 0^ 
"l .4540 

UPPt!< 
_L',OU.\D 
0.4504 

6 
7 

' a 
9 
10 

11 
12 
13 
14 
15 

2 1.5578 
3 0.6917 

4 1 .0001 

5 _1.4520_ 

1 . 0 0 0 1  
1.2838 
1.5105 

1.2460 
0.9099 
0.7578 

o'.'i'in' 
0.6490 

0.6 322 
3.3572 

C.7402 

0.3861 
"0.9406 
0.3565 

"C.94 77" 
0.36 15 
0.3 960" 
0.3C82 

0,5038" 
0.1769 
"0V2C68 
0.2185 

0.2205 
0.8190 

16 3.3169 0.8716 

P A R T_J.] h 
T V, 0 .  
(88,-0. 
"(75,-0. 
( 4, 0. 
( 5, 0. 
J 9,-0. 
( 6, 0. 
(12, 0. 
( 9, 0. 
(12 , -0 .  
( 1 0 ,  0 .  
_(_3,_0. 
( 6 , 0. 
(  1 , 0 .  
(  2 , 0 .  
(15, 0. 
(39, 0. 
( 6 3 ,_0 . 
( 1 6 ,  0 .  
(40, 0. 
(64, 0. 

I , .  uU t PUT 
THAT VA: 
Y5T( 9/' 
17)(94, 
0 8 )  ( 8 1  
55 ) 
94) 

12  ) ( 11 ,_  
95) 

22)(87, 
1 6 ) ( 1 1 , -
16)(87,-

54 ) 
06) ( 5 , 
21)(81,-
30)( 7,-
30)( 8,-

071(21,-
07)(45,-
07)(69,-

0 77(2 27-
08)(46, 
08) (70,-

i\ Ù . A '̂ 4 i ) 
.U[ I F P, 
0 . 0 6 ) ( 1 1  
0.07) 
0.29 ) ( 87 

PUUPUA r I0-\1AL 
\ R T  I S  uVr R .05 
,-0 .06 ) ('8 27 0.16 )" 

,'0.22)(93,'0.29) 

0.17) (94, 0.06) 

0.14 ) (93 

0.14)(82 

0.14 ) (93 

0 . 1 8 ) ( 8 2  
o708)(87 
0.06 ) ( 9 
0 - 0 6  )  ( 1 2  
0.07)(27 

0.07) (51 
0.07) (75 
b . 0 8')! 2 8 
0.08 ) (52 
0.08)(76 

,-0.05) 
, 0.06)(94,-0 
, 0.05) 

1 1 ) 

,0.07)(88, 
, 0.06)(9 3, 
, 0.07)(11, 
,-0.13)(87, 
, 0.07)(33, 

,0.07)(57, 

,__0.06 ) 
, 0708^(34, 
, 0.08)(58, 

,  0 . 0 8 )  

-0.07) 

0 .0  8 ) '  
- 0 . 1 0 )  
- 0 . 0 8 )  
-0.07 ) 
-0 .0 7 ) 

:'o7'o8l' 
-C .06 ) 

Computer Output No. 10. Brown's system observing all outputs 
Time = 6:10 AM 
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OBSERVED OUTPUT NOS.1,2,3,4,5,6 TIXE = 8:00 A.,"'. 
OBSERVABILITY FUNCTIONS 
C.454SD-03 0.19650 00 0.26 150 00 0.35S60 CO 
0.42630 00 0.6752D 00 0.6812C 00 0 . 7 7960 CO 
0 .110 3 DC 1 0.131 7 0 01 0.72010 01 0.7 3100 01 
0.14590 02 0.14620 02 0.23210 02 0.23260 02 

STATE VARIABLE NO. ON LEFT MARGIN 
SIX SMALLEST EIGENVALUES V.'ITH ASSCCIATED EIGENVECTORS 

£ a ^4445 12̂  Û ̂2Ûi49 Q jJ^962 £ 
1 C .25775 0. 5 1 9 2 2  -0 . 0 1 1 5 7  -0 . 0 2 2 8 4  0 . 0 1 4 9 2  -0 . 1 5 0 0 1  

2 C .63106 - 0 . 2 1 1 8 8  -0 . 0 1 1 4 3 '  " 0 . 0 2 4 9 0 "  "" 'û . 0 3 6 8 7  -0 . 0 2 8 7 /  

3 -0 .25809 0. CC095 0 .01085 -0 .003 9 8 0 . 9 2 0 4 0  -0 . 0 4 6 9 0  

4  -0 . C O O  1 8  0. 18426 -c -00177 " '-0 . 0 0 4 7 4  0 . 0 8 6 4  1  0 .18 8 7 5 

5 -C .013CO -0. 0 0 9 2 6  -c .12063 -0 ,27616 c . 0 0 0 7 4  0 . 0 4 8 0 4  

6 C . 0 0 0 3 8  -0. 0 7 5 0 0  "  0 .0 0548 "-0 .017 91 • 0 . 2 1 2 6 3  "  • 0 ,08862 

7  c  . 0 0 4 0 5  -0. 0 0 2 2 1  -0 . 3 7 5 9 1  0 . 0 8 4 4 0  0 . 0 0 4 6 4  0 . 1 2 0 6 0  

' 8 '  -0 .01617 '-0. 0 0 6 4 5  0 ,"13 571" ' 0 . 2 4 8 9 8 "  U  , 0  1 0 1 8 '  -0 . 0 6 2 2 4  

9  c  .00220 0 .  0 1 1 2 1  0 .39581 — 0 . 0 8 3 6 9  -0 . 0 5 6 1 5  -0 . 1 9 6 9 9  

10 0  . 0 0 1 2 3 "  -0. 0 1 3 5 8  "-0 , 2 4 0 0 0  "" 0 . 0 0 3 4 1 '  ""-0 . 0 2 2 0 6 " '  0 . 8 2 3 5 0  

11 c  . 2 5 8 4 1  0 .  74321 — 0 . 0 0 210 — 0 . 0 1 6 2 9  0 .11548 0 . 0 8 7 3 8  

1 2  0 . 6 3 3 4 9 "  -0. 303 7 1  "" ""c . 0 2 3 3 3 " "  -0 .02935 0 . 2 8 3 2 4  0 . 0 3 2 3 3  

13 c  .0 1285 0. 02270 0 . 2 3 0 7 7  0 . 6 7 7 8 9  0 . 0 1 0 5 8  0 . 1 2 7 8 0  

1 4  - 0  .00352 -0. 00126 " 0 . 7 4 6 4 0  •-o' . 2 7 2 3 6 '  ""-0 . 0 0 2 8 2  0 . 4 0 / 9 4 "  

15 -0 .00056 -0. 0 1 9 7 0  c  .00586 0 . 0 0 9 7 3  0 . 0 0 0 3 4  0 , 0 0 3 5 6  

16 c  . 0 0 0 1 5 "  - 0  .  00059" •- 0 . 0 0 9 3 7  "-0 .00133 -0 .03173 0 ,03281 

DEGREE OF OBSERVABILITY P c  R  STATE VARIABLE 
STANDARD U P ! '  rR OBSCI iVFL OUT P U  T i-'iO. Ai N O  P R Û P U : <  i  I  O N ,  AL 
0[ V 1 A 1 I 0-'i nL!U•••JO P A R T  O F  T H A T  V  A L u i "  J  P  P A R T  u V E i - l  0  . 0 5  

""1 0TÔH22 C . 019 5 (~9 ,-0Vl6 ) (11,-0.14) 
2 0.G338 G.C082 ( 9,-0.16)(11,-0.15) 
3 0 .08 21 O.OÏ92'' '( '9,"0.15) (11, 0.14) 
A  l . C C O O  C . 9 9 0 2  (  5 ,  0 . 9 9 )  
5 1.0105 0.59 7 8 ( 7, 0.06)(11, 0.59) 

__6 l̂ .C C 0 C C . 9 7 54 ( 6 , 0 .98) 
7 1.0454 0.4 691 (12, 0.43)(15, 0.08)(16, C.C7) 
8 0.9053 0.2832 ( 9, 0.28) (12,-0.08 ) ( 15,-0 .06 ) ( 16, 0 .07 ) 
9 0.9717 0.2 2 87 (9,-0.07)(12,-0.19) 
10 0.8183 0.2862 (10, 0.32)(12, 0.09)(16,-0.07) 
11 "0.0817 0.0185 ( 9 ,-0. 15) (1 1 ,-0. 14) 
12 0.0337 0.0080 ( 9 ,-0. 16) (11 ,-0. 14) 
13 0.'5 913 CV2 7 8 4" ' ( ' 1 , 0 . 38 ) ( 7 ,-0.09) (11,-0.26) 
14 0.5978 0,2547 ( 2, 0.34)( 8,-0.08)(12,-0.23) 
15—3.7125" C.9227 ' (15,"0.06)(21 ,-0.07)(27, 0.07) (33,-0.07) 

(39, 0.07) (45,-0.07) (51, 0.07) (57,-0.07) 
(63, 0.07) (69,-0.0 7 ) (75, 0.C7) (8 1,-0.07) 
(87, 0.07) (93,-0.07) 

16'•~"3T7029 0T9'22'5 ( 1 6 , '0.05')"Ï22",-0.0 7 ) (28, 0.07) (34 ,-0 .07) 
(40, 0.07)(46,-0.07)(52, 0.07)(58,-0.07) 
(64, 0.07) ( 70,-0.07 ) (76, 0.0 7) (82,-0.07) 
(88, 0.07)(94,-0.07) 

Computer Output Wo. 11. Brown's system observing all outputs 
Time = 8:00 AM 
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O B S E R V E D  O U T P U T  N O S . 1 , 2 , 3 , 4 , 5 , 6  T I N E  = 1 0 : 0 0  A  -  i V  .  
O B S E R V A B I L I T Y  F U N C T I O N S  

0 . 7 8 1 1 D - G 3  0 . 1 9 8 3 D  0 0  0 . 2 2 5 4 0  0 0  0 - 3 4 9 3 D  C O  
0 . 3 6 S 9 D  GO _ 0.51420 0 C _ .  0 . 7 2 1 7 0  0 0  _ 0.77 96Ù 0 0 
0 . 1 2 S 4 D  01 0 . 1 3 9 5 0  0 1  ' 0.72990 01 0.7383Û CI 
0 . 1 4 4 3 0  0  2  0 . 1 4 4 7 0  0 2  0 . 2 3 2 7 0  0 2  0 . 2 3 3 1 0  0 2  

S T A T E  V A R I A B L E  N O .  O N  L E F T  M A R G I N  
SIX SMALLEST EIGENVALUES WITH_ASSOC IATEC EIGENVtCTCRS 
r >  n n n T . j  ' n. i n o T V  " " "  n ' )  3  R  3  A  "  " n  V  O  9  «  M  A  Q  «  M  C  _  Q Q fl. (j. 

1 c .47898 — 0 .35446 0 .02214 0 . 1 3 3 4 4  0 .01C67 -0 . 0 5 7 6 0  
2 " c .39111 0 .43412 "̂"'0 .01393 ' 0 .11130 — 0 . 0 3 2 7 8 '  ' 0 . 0 4 3 0 4  

• 3 -c .48040 -0 .00255 -0 .02706 0 . 8 2 6 6 2  0 . 0 0 8 6 8  -0 .01751 

4  c .00009" ""-0 .  12550 C .00927" "0 . 1 9 4  3 2  0 . 0 1 8 9 7  0 . 0 6 1 3  7  
5 -c .01276 0 .01980 0 ,25671 0 . 0 0 1 6 0  0 .196 72 0 . 0 0 0 6 3  
6 c .00062 0 .15299 " -0 .01742 0 .15864 0 . 0 1 9 8 3  -0 .04 12b 

7  c .01353 0 .00786 0 .25465 0 .010 12 -0 .18955 -0 . 0  1 3 2 3  
'a" -c .01153 "-0 .01178" -o" .28665" -0 . 0 0 2 0 9  -0 . 1 6 8 6 1 '  -c' . 0  5 0 6  5  
9 C .01443 -0 .02420 -0 .27199 — 0 .06294 0 .1716 3 -0 . 0 4  3  1 7  

IC •  - c  .00107 0 .06558 0 .55620 0 .01730" "_0 . 0 0 1 8 7  ' 0 . 7 1940 

1 1  c .48073 -0 .50702 0 .02108 0 .36194 0 . 0 3 9 0 8  0 . 0 4 7 4 5  
12 0 .39332 0 .61845 -0 .06971 •" 0 .29471 ^ 0 . 0 2 6 9 6  -0 . 0 4 9 1 4  
13 c  .01284 -0 .03587 -0 .43837 0 . 0 1 1 2 8  -0 .66445 0 . 4 7 5 8 3  
1 4  - c  .01285' "-0 .00508 -0 . 4 5 1 8 9  ••""-0 . 0 2 1 8 7  0 . 6 4 9 3 5 "  " "o .48512 
15 - C  .00039 0 .01985 -c .00556 0 .00027 -0 .00677 0 .00449 

1 6  ' 0 .0 00 26"' "  0  . 0 0 1 7 2  0 .01531 -0 .027 31 0 .00322 ' 0 .02186 

Computer Output No. 12. Brown's system observing all outputs 

Time = 10:00 AM 
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ûcOKi-t: or ORSrXVAJlLl i Y PCK SI Aie VAXlsnLk 
S T ,\i \ii j Ak n Ur'P::l< 015 i> c K V n iJlilPUl rlij. 'X.--.'.) I 0.;AL 
D i -  V n T I  O N  t - t n u / i o  p a k  r  o h  t h a t  V A L U t  :  f • >  k T _ : s o . c s .  

1 0.0582 C.0124 ( 9,-0.i3)(11,-0.10)(12, 0.10) 
2 _ 0.C712 C.0152 ( 9 ,-0.13 ) ( ll?-0-^0 > (.12» J3. 10 ) 
3 0.0580 C.0122 ( 9, 0.13)(11, 0.10)(12,-0.10) 
4  l . C C O O _ _  C . 9 7 0 9 _ _ (  5 , _ 0 . 9 7 )  
5 1 .C398 0.4163 ( 1 1 ,  0 . 3 9 ) ( 1 5 ,  0.07) 

_6 l.CGOG C.9766 ( 6,__0.98)_ 
7 1.0310 0.4727 (12, 0.44)(15, 0.07) 
8 1,0108 0.2C87 ( 9, 0.11)(11,-0.10)(12,-0.09)(15,-0.06) 

116,0.07) 
9 0.9736 0.2 143_ ( 9,-0.15) (il,-0.09) (12 ,-0.06) 
10 0.6281 0.1616' (10, 0.21)(11, 0.09)(12, 0.08)(16,-0.05) 
11 0.0580 C.012C ( 9,-0.12)(11,-0.09)(12^0.10) 
12 0 .07 06 C ."û 145 ' '( 9 ,-0.12) (11,-0.09) (12, 0.10) 
13 0.5966 C.2384 ( 1 , 0.32) ( 7,-0.08) (11 ,-0.21) 
14 "0.5954 0.2545' (' 2,' 0.34) ( 8 ,-0.08) (12 ,-0.23) 
1 5  3 . 7 1 1 1  0 . 9 1 2 4  (15, 0.05)(21,-0.07)(27, 0.07)(33,-0.07) 

( ' 3 9 T b . 0 7 )  ( 4 5 V - 0 . U 7 )  ( 5 1 ,  0 . 0 7 )  ( 5 7 , - 0 . 0 7 )  
(63, 0.07)(69,-0.07)(75, 0.C7)(81,-0.07) 
(87 , "0 .'07y(y3 ,-0.0 7 ) 

16 3.6786 0.8947 (22,-0.06)(28, 0.07)(34,-0.07)(40, 0.07) 
(46 ,-0 . 07 I ('52 ,"'0.07 ) ('58 ,-0'.07 ) ( 64 , 0 .07 ) 
(70,-0.07)(76, 0.07 ) (82,-0.07)(88, 0 .07) 
(94 ,-0 .07)" " 

Computer Output No. 12 (Continued) 
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OBSERVED OUTPUT NUS.1,2,3,4,5,6 TIKE =12:10 P-N. 
OBSERVABILITY FUNCTIONS 
0.14320-02 0.1955C 00 0.2009C GO 0.3148U CO 
C.4 150D 00 0.49150 00 C.73700 CO 0.78130 CO 

'G.19d3D 01 • 0.2C07D 01 0.7725D 01 0.78280 01 
0.13090 02 0.13130 02 0,23510 02 G.2359D C2 

STATE VARIABLE NC. ON LEFT MARGIN 
SIX SMALLEST EIGENVALUES KITH ASSGCIATEC EIGENVECTORS 
r /.rt n i n c; /, 7 n 9 r r O 9 n A .41 ̂ 04 A . 4 S 19^42 , Q  Q a214]^ D .  

1 c  .57352 — 0 . 03631 0 .01212 0 .2414 1 -0 .02675 - 0  .03704 

" ' 2  ' c  .035 6 5' "  "'  o  .  43012" - c  .35834 0 .01693^ " ' - 0  .03675' 0  .07128 

3 - c  .57762 -0. 02232 -0 .02464 0 .77182 -G .01935 -0 .01458 

' 4 • '  c  .00072 -0. 01215 0 .0 04 87 " 0  .24302 """ 0 .04 501" 0  .02359 

5 - c  .00481 0. 18329 0 .22781 G .01007 0  .02034 -G .04509 

6 c  .C007C " 0. 14083 - c  .13861 ' 0  .01433 0 .00289 " -0 .08613 

7 c  .02854 — 0 . 00059 0 .02109 0 .00532 —0 .19 712 -0 .01409 

8 - c  .00873 ""-0. 20586 -G .25397^' - 0  .02293' ' -Ù .00902 ' -0 .04024 
9 c  .01208 -0. 00957 — c  .00605 -0 .05019 G .14054 G .00254 

10 c  .01295 0. 54286 c  .54310" " 0 .04470 ' -Û .00251"' ' 0 .50643 

11 c  .57692 -0. 05982 c  .00567 0 .52841 0 .06429 0  .00700 

12 0 .03576 0. 57960 • -0 .55140 c  .03033 -0 .01055" -0 .08995 

13 c  .00539 -0. 28730 _-0 .36431 -0 .00950 -0 .07677 0 .84408 

14 — G .02794' "-0. 00065 — 0 .049 85 ' -0 .01593 0 .96240 0 .06499 

15 - c  .00017 0. 01445 -0 .01751 -0 .00005 -0 .00144 G .00821 

16 c  .00096 0. 01314 G .01348 - 0  .02829 ' 0 .00753 0 .01148 
DEGREE OF OBSERVABILITY PER STATE VARIABLE 

STA\nA,\D Ui-^ 1- L ,< nnsE RVEû OUTPc i r kO. ANU U/C,\T10XAL 
uEvI \ TI ON H^KT UF TI4AT VALuc l F P ,KT IS uVF^ : 0. . G 5 

1 0.0659 c .  0142 ( 9, -0.06)(12, 0.16)(93, C .06) 

2 0.5821 0. 1503 ( 3, -0.21)(12, 0.10) 
' 3 ' 0.0652 c .  0137" " ( 9 '0.06)(12, -0.16)(93, -0 .06 1 

4 l.COOl c .  94 21 ( 5, 0.94) 
5 1 .1807 " c .  3001 " ( 10, 0.06)(11, 0.22) (94, 0 .07) 

6 1.0000 c .  9808 ( 6, 0.98 ) 
"T 1.0208 "  c .  5143 '( 8 , 0.05)(1 2 V  0.49')" 
8 1.096/ 0. 2061 ( 10, -0.06)(11, -G.13)(94, - c  .05) 
9 ""1.5416 ' "0. 4096 { 9,--0.15)(16, -0.08)(8 1, -G .05)(88, -0. 09 ) 

(93, 0.13)(94, -0.07) 
10 "' 0.5200 ~0. 1392 ( 10, 0.211(11, 0.13) 
11 0.0654 c .  0136 ( 9 , -0.06)(12, 0.16)(93, G .06) 

12 0 .4863 c .  ÏC22 ( 3,' -0". 14 ) ( 6 ,' "O.IÛ ) ( 12, 0 .07) 

13 0.6188 G. 1962 ( 1 , 0.27)( 7, -0.06)(11, -0 . 14 ) 

14 0.5936 0. 26 3 5 " ( 2, 0.36)( a. -0.09 H 12, -0 .25) 

15 3.5281 C. 8466 (21, -0.07)(27, 0.07)(33, -0 .07)(39, 0. 0 7 ) 
(45, -0.07)(51, 0.07)(57, -0 .07)(63, • 0 . 0 7 ) 
(69, -0.07)(75, 0.07)(81, -0 .06) 

16 "3.4818 ""oV 8'272 (22, -0.06)(28, "•"0.0 7 ) (34, — G .G 7 ) ("4C",' C « 07l 
(46, -0.C7)(52, 0.07 ) (58, — 0 .07)(64, c .  07 ) 

(70, -0.C7) (76, 0.07)(82, -0 .06) 

Computer Output No. 13. Brown's system observing all outputs 
Time = 12:10 PM 
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VII. SUMMARY AND CONCLUSIONS 

This thesis expanded the idea of Brown with regard to the question, 

"rlow observable?". The criterion for the measure of how observable the 

system is was more fully developed. This overall system criterion turned 

out to be the smallest eigenvalue and its associated eigenvector of the 

T 
symmetric matrix. 

In addition, two more criteria were developed which are measures of 

how observable each state-variable of the system is. One of the criteria 

is based on the standard-deviation error analysis and the other is based 

on the upper-bound error analysis. 

The numerical techniques for calculating these criteria were fully 

developed. Two inertial navigation systems were used as examples to test 

these criteria. The results are contained in this thesis. 

A method was developed to compute the Q, matrix of a time-varying 

system. It involved differentiating a function a considerable number of 

times. This differentiating was done on the computer algebraically rather 

than numerically. 

By using the criteria developed in this research, a designer of a com

plex system should be able tq_ gain a much better insight into his system 

with less calculation than by other methods available to him. Exactly how 

these criteria would be used would depend on the specifications of the 

system and the designer using them. 

It should be pointed out that all criteria are obtained from the Q 

matrix and can be applied to the control lability Q, matrix as well. 
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X. APPENDIX A - FORTRACr PROGRAM FOR CALCULATING 

THE OBSERVABILITY CRITERIA 

The program is as given in Computer Output Number l4. The sub

routine for calculating the eigenvalues and eigenvectors is given at the 

end of the main program. 
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, .. . . CS/360 FORTRAN H - - • -

C COMPUTATION OF OBSERVABILITY FUNCTIONS 
DOUBLE PRECISION Q(18 , 965 ,UC18,18),A{324),R(324),F{18), 

1X(18),AM(18,18),CD(4),C(16,2,16),FN(4),CC(512),P(18,96) 
2CM(16,4),VT(1728),FI(5),T,PI,W,kT,S6,PI6,CTX,CX,TCX, 
3 A N RK X 7 AN OR iM . ...... -
INTEGER IDA(4),IDS(4),IP(5),IPC(1728),IS(18) 
EQUIVALENCE (Q(l),VT(i]),(P(lj,IPD(i)),(C(l),P(865]j, 

1(C(I),CC(I)) , (C(l),CM(1)) 
1 FORMAT (513) -- . 
2 FORMAT (/T2,10D12.4/(T5,10D12.4)) 

6 FORMAT (213,016.7) 
( 1 p ,̂ 5 ) . • -—- — - - - - « —— — -

C CLEAR A MATRIX AND INPUT NEW VALUES 

IF (N) 24,24,25 
25 CONTINUE 

NN=N*N 

CO 9 J=1,N 
9 AM(I,J}=Q.ODC -
8 READ(1,6) I,J,T 

IFJI) 12,12,15 
15 AM(I,J)=T 

12 CONTINUE 
C COMPUTE COMPONENTS OF EARTH'S ROTATICN RATE AND„INSERT..INTO 
C A MATRIX 

PI=3.14159265358979300 
W=15.041C7DC*PI/(180.000*3600.OCO) 
SB = 1.0D0/DSCRT(2.ODO) 
PI6=PI/6.0D0 
AM(l,2) = k*DSQRT(1.0D0-SB#SB) 
AM(2,1)=(-AM(1,2)) 

' AM(2,3)=W*SB - • 
AM(3,2)={-AM(2,3)) 

C OUTPUT A MATRIX 
3C FORMAT («1 A MATRIX') 

WRITE (3,30) 
CO 90 1=1,N 

..9C . . bRITE (3,2) (AM( I, J) ,J = 1,N) 
C CLEAR C MATRIX AND INPUT NEW VALUES 

. READ (1,1) NM 
M=N*NM 
NQC—M 
DO 16 1=1,512 

1 6 CC( I ) = 0*0D0 • - - -

Computer Output No. ik. Fortran program for calculating the observability 
criteria 
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31 READ (1,6) I,J,T 
IF { I ) 35,35,32 

32 CM(I,J)=T 
GO TO 31 

C OUTPUT C MATRIX 
5 FORMAT ( //T3 » 'C.-MATRIX ' ) 
35 hRITE (3,5) 

DO 17 1 = 1 ;NM — - - — 
17 WRITE (3,2) (CM(I,J),J=1,N) 
C FORM Q MATRIX .. 

DO 21 1=1,NM 

21 G{J, I >=CM(I , J) 
N T = NM+1 . . 
DO 18 J=NT,M 
IL = J-NM 
DO 18 1=1,N 

CO 18 K=1,N 
18 Q(I,J)=U(I,J) +Q(K,IL)*AM(K,I). 
129 FORMAT (//T3,'Q MATRIX') 

DO 125 1=1,N 
125 . WRITE (3,2) ( Q ( I , J ) , J = L, NGC )...._ 
2C2 CONTINUE 
C NORMALIZE Q MATRIX 

CO 14 J=1,NQC 
T=C»CDO , .. 
'DO 10 1 = 1,N 

IC T=T+(Q( I,J)*Q(I,J)1 
IF (T) 14,14,19 

19 T=1.CDC/DSQKT(T3 
DO 11 1=1,N 

11 Q(I,J)=Q(I,J)*T 
14 CONTINUE 
C FORM PRODUCT OF NORMALIZED 0 MATRIX ANC ITS TRANSPOSE.ANC 
C COMPUTE THESHOLD LEVEL FOR NEXT PART 

K = C . 
ANCRM=O.CDO 
DO 40 1 = 1 ,N . . 
X(I)=1.CD0 

K = K+1 
A(K)=C«COC ... . .... , 
DO 46 L=1,M 

46 A(K)=A(K)+Q(I,L)«Q(J,L) -
IF ( I-J) 41 ,40,41 

41 ANORM = ANORM + A(K)«A(K) -

Computer Output No. (Continued) 
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AC CONTINUE 
C CALCULATE EIGENVALUES AND EIGENVECTORS BY JACOB I METhCC 

CALL EIGEN (A,R,N,F,ANORK,ANRMX ) 
C COMPUTE THESHOLO LEVEL AND SET TO ZERO ALL EIGENVALUES A N D  
C ELEMENTS OF EIGENVECTORS WHOSE ABSOLUTE VALUE IS LESS THAN 

1 H 1 i 1L, 11LJ \/ • •— - - ——— - - —.- -
IF (ANRKX) 72,81,72 

81 ANRNX=1.00-12 
72 ANRNX=ANRyX*1.00+3 
27 F O R M A T  (//T3,«THRESHOLD =',D14.7) 

KRITE (3,27) ANRXX 

IF (CABS(R{I))-ANRMX) 366,366,374 

374 CONTINUE 
^3 C] ^3 5 I 1 p ... — .  ̂
IF (F(I)-ANRMX) 73,73,74 

A( n=O.CDO 
C CHECK, IF STATE VARIABLE..IS NOT OBSERVABLE,._S£T INDICATOR 

K=(I-1)*N 

K  =  K + 1  

. - — IF IRIK)) 45,66,45 
45 X(J)=G.CDC 

GO TO 65 
74 A(I)=F( I S 
C INVERT DIAGONAL M A T R I X  

F ( I)=1.CD0/F(I) 
65 CONTINUE 
C OUTPUT OBSERVABILITY FUNCTIONS AND EIGENVECTORS 
34 FORMAT ('1',/////,T14,'OBSERVABILITY FUNCTIONS') 

bRITE (3,34) _ 
92 F O R M A T  (T10,4D15.4) 
- - WRITE ( 3 ? 9 2 ) (A(J) , U — 1 , N ) . - - . —, . - .. ^ .. . ^ .. 
33 F O R M A T  (T14,"STATE VARIABLE NO. ON LEFT M A R G I N ' , / T 1 9 ,  

I'SIX SMALLEST EIGENVALUES WITH ASSOCIATED EIGENVECTORS') 
WRITE (3,33) 

4C2 FORMAT (Ti6»6FiO»5) 
WRITE (3,402) (A{J),J=1,6) 

4 C 3 —  F O R M A T  ( ' + ' ,  T 1 9 , «  » ,  
1 • « ) 

N 6=N *6 

2C4 FORMAT ( T14,I 2,6 F10 . 5 ) 
365. -. WRITE (3,204) I,(R(J),J=I,N6,N) — — 

Computer Output No. (Continued) 
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C  C H E C K ,  IF KG STATE V A R I A B L E  IS O B S E R V A B L E ,  OUTPUT MESSAGE 
C AND GC TC END 

T=C.CDC 
DO 57 1 = 1,N 

57 T = T-6-X(I) 
IP { T } 6 9,68,69 . _ — .... 

9 4  F O R M A T  ( / / T 1 4 , ' N 0 N E  O F  THE STATE VARIABLES A R E  » ,  
1'OBSERVABLE ») . 

6 8 WRITE (3,94) 
GO TO 79 

C COMPUTE GENERALIZED INVERSE 
69 , . _ DO 76 I = 1,N__ 

DO 76 J=1;N 
LI=I 
L 2  =  J  
L { I , J ) = C « G D G . ... 
no 7  6  K = 1 , N  

- U(I,J)=U(I,J)+R(L1)*E(K)*R(L2) 
Li=LI+N 

DC 80 J=1,M 
DO 77 I—1,N . . 
A(I)=0-CDG 
DO 7 7 K — 1 , N . -. — -

77 A{ I)=A( I)+U(I , K ) * Q ( K , J )  
U I I , ... .... -.... — .... — 

80 P{I,J)=A( I) 
C OUTPUT H E A D I N G S  
6C F O R M A T  (T14,«DEGREE OF CBSERVABILITY PER STATE V A R I ' ,  

1'ABLE',/T17,'STANDARD UPPER OBSERVED OUTPUT. NO. « , 
2'AND PROPORTIONAL',/TI7,'DEVIATION BOUND PART OF 
3'THAT VALUE I F P A R T I S 0 V E R 0 . 1 ' ). - ... 
WRITE (3,60) 

C FOR EACH STATE VARIABLE , DO THE FCLLCWING ... 
DO 61 1 = 1,N 

C CHECK, IF STATE VARIABLE IS NOT OBSERVABLE, OUTPUT MESSAGE 
C AND GO TO NEXT STATE VARIABLE 

.. I F ( ( I ) ) Q, 85 , 8- ......... .—...... ...—. ... — 
93 FORMAT (T14,1 2,T17, ' NOT OBSERVABLE') 
85 WRITE (3,93) I . ... . 

GO TC 61 
C CALCULATE STANDARD DEVIATION OBSERVABILITY 
84 T=O.CDO 

DO 6 2 *J = 19M - — 
62 T=T+P{I,J)*P(I,J) 

Computer Output Wo. (Continued) 
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C CHECK, IF STANDARD DEVIATION OBSERVABILITY IS ZERO, OUTPUT 
C ZERO FOR BOTH TYPES OF OBSERVABILITIES ANC GO TO NEXT 
C STATE VARIABLE 

IF {T) 309,309)63 - - - - -
3C9 ANCRM=T 

kRITE (3,7) I,ANCRM,T . 
GO TO 61 

63 ANORI^ = 1*ODO/DSCR i(T) - — 
C CALCULATE UPPER BOUND OBSERVABILITY 

I ^3 # U -
CO 38 J=1,M 

3 8 T = DABS(P(I ,J) ) + T . 
52 T=1.CD0/T 
C COMPUTE DECIMAL PART OF EACH OBSERVED OUTPUT VALUE IN THE 
C STATE VARIABLE 

ISS = C 
319 DO 320 J=1,K 

A(J)=P(I,J)«T 
C CHECK, IF DECIMAL PART IS OVER 0.1, STORE, TO BE USED LATER 

IF ( D A 6 S ( A ( J ) ) — 0 .1D 0 )-, 320 »320 , 5 i -
51 ISS=ISS+1 

A(ISS)=A{J) 
IS(ISS)=J 

320 CONTINUE 
C OUTPUT DEGREE OF OBSERVABILITIES AND DECIMAL PARTS OVER 0.1 
7 . . FORMAT (T14,I2,T17,F7.4,T27,F7.4;(T36,4(A1,I2,',',F5.2, 

1 • ) • ) ) ) 
V.RITE (3,7) I,ANCRM,T,(PL,IS(J),A(J);J = 1,ISS) 

61 CONTINUE 

3CG CONTINUE 
GO TO 22 -

23 FORMAT (•1',//T3,•END OF PROBLEMS') 

STOP 
END . . 

Computer Output ETo. ik (Continued) 
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GS/360 FORTRAN H 

SUBROUTINE EIGEN (A,R,N,F,ANORK,ANRXX) 
DIMENSION A(l),R(l),F(l) 
DOUBLE PRECISION A,R,AN0RM,ANRMX,THR,X,Y,SINX,SINX2, 

1 CCSX,C0SX2,SINCS,F 
NN=N*N 
J = N+ I -
CC 220 1=1,NN 

220 R(I)=0.0 
DO 215 1=1,NN,J 

215 R(I)=l.C 
C COMPUTE INITIAL AND FINAL NORFS (ANORM ANC ANCRMX) 

IF(ANORK) 165,165,40 
40 AN0Ky=1.414*DSQRT(ANGRM) 

ANRPX=AN0RM*1.0D-12/FLCAT(N) 
C INITIALIZE INDICATORS AND COMPUTE THRESHOLD, T.HR 

THR=ANORM 
4 5 THR = THR/FLOAT(N ) -
50 L = 1 
55 X=L+1 

C COKPUTE SIN AND COS 
. .. 60 .rG=(M»K-M)/2 

LQ=(L*L-L)/2 
Ly = L + MU - .. 

62 IF(DABS{A(LM)Î-THR) 130,65,65 

LL=L+LQ 

X=0.5*(A(LL)-A(NK)) 
68 Y=-A(LM)/DSGRTtA(LM)*A(LM)+X*X]. 

IF(X) 70,75,75 
70 Y=—Y . -
7 5 SINX=Y/DSQRT(2.0*(1.0+(DSGRT(1.0-Y*Y)))) 

... S INX 2 = S I NX ̂ S INX 
78 CCSX=DSGRT(1-C-SINX2) 

C0SX2 = C0SX*C0SX - — - -
SINCS =SINX*COSX 

C ROTATE L AND^K .COLUMNS _____ 
ILQ=N*(L-1) 
IKQ = N*(M-1) 
DC 125 1=1,N 
iQ—(i^i'~i)y2 
IF (!-L) 80,120,80 

80 IF (I-M) 85,120,90 _ . 
85 IM=I+MQ 

90 IM=r+IQ 

Computer Output No. l4 (Continued) 
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95 IF(I-L) 100,105,105 
100 ÏL=I+LQ 

GO TO 110 
105 IL=L+IQ 
lie X=A(IL)*COSX-A(iy)*SINX -

A(IM)=A(IL)*SINX+A(iM)*COSX 
A ( I L ) — X 

120 ILR=ILG+I 
IMR=1MQ+I 
X=R(ILR)*COSX-R(IMR)*SINX 
R(IMR)=R(ILR)*SINX + R(IXR)»COSX — -
R(ILR)=X 

125 CONTINUE 
X=2.0*A(LK)* S I N C S  
Y=A(LL)*CCSX2+A(yM)*SINX2-X . 
X=A(LL)*SINX2+A(PM)*C0SX2+X 
A(LM) = ( A( LL)-A(N.M) )*SINCS+A(LM)*(C0SX2-SINX2}_ 
A(LL)=Y 

C TESTS FOR COMPLETION 
C TEST FOR M = LAST COLUMN _ 
130 IF(y-N) 135,140,135 

GO TO 60 
C TEST FOR L = SECOND FROM LAST COLUMN 
140 IF(L-(N-1)) 145,150,145 
145 L = L+1 -

GO TO 55 
150 IF{IND—1) 160,155,160 - - - — -
155 IND=0 

G 0 T 0 5 0 — -,,.—. — 
C COMPARE THRESHOLD WITH FINAL NORM 
160 IF( THR-ANRMX3 165,165,45 -

C SORT EIGENVALUES AND EIGENVECTORS 

K=((J+l)*J)/2 

CO 185 1=1,N 
X = F(I) 
DO 172 J=I,N 
IF ( X—F ( J ) 117 2,173» 171 

171 X=F(J) 
173 L=J 
172 CONTINUE 

IF (L-I) 185,185,174 
174 F(L)=F(I) 

F(I)=X 
IK=(I-l)*N 

Computer Output No. (Continued) 
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DC 180 K=1,N 
TK=IM+1 
IL=IL+1 
X = R ( I L )  
R( IL } = R(IM) 

180 R(IM)=X 
185 CCNTINUE. 

RETURN 
END 

Computer Output No. l4 (Continued) 
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XI. APPENDIX B - FORTRAN PROGRAM FOR CALCULATING 

THE GENERALIZED INVERSE 

The computer program given in Computer Output Number 15 is a 

slightly modified version of the program due to Rust, Burrus, and 

Schnee"berger (30). 
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SU!'. Kl HIT I :\r PI NI ( A ,U, F, M, N ) 
oiypNSinN A(yn,?G).u(z:,?0),r(2C),T(2C) 
UuU^LE ^RcCISIUN A,U,F,r,ul,0?,TuL 
no ic T=1.N 
DO 5 

5 U(I,J)=C.C 
U(I,I)=1.G 

10 F(I)=C.-
roL=i.cn-2G 
DO 1^0 J=1,N 
D?-C.O 
DG 7 1 = 1, M 

7 n?=D2+A(T,J)*A(I,JI 
IF (02) ioc,inc,12 

12 j;'.=j-i 
Ir (JM) 70,70,8 

8 on 5C L=1,2 
on 30 K=1,JM 
T(%)=G.O 
00 3^ 1=1,M 

30 T (K ) =T (K )+A ( I , J )-A ( ï , K) 
00 4 5 K'=1,JM 
IF (F(X)) ?A,?6,34 

34 00 3 5 1=1,M 
35 A (I ,J)=A( J,J)-T(K)*A(I ,K ) 
3n PC) 4"' 1 = 1,K 
40 li { I , J ) =U ( I , J )-T ( K ) :::U (I,K) 
4 5 COi\ riNUE 
50 CUNT r NilE 

0]=02 
0 2 = 0 . 0  
00 11 1 = 1,^1 

1 1  . 02=02+A(I , J l*A(I , J )  
IF ( ( 0?/!.)l)-TOL) 55 , 55, 70 

55 00 6: 1^1,JM 
T ( I ) = 0 .0 
00 60 K=1,I 

.60 T ( I) =T (1 )+U ( K , I) >:=li (K, J ) 
00 6 5 1=1,1% 
Afl, J)=C.O 
00 6 5 K=1,JM 

65 A ( I , J ) =A { I , J ) -A ( I , K ) >:< T ( K ) ̂XF ( K ) 
0 2 = 0 . 0  
on 16 r=i,j 

16 02 = 02+0( î,J)(I , J) 
GO TC 75 

Computer Output ITo. 15. Fortran program for calculating the generalized 
inverse 
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yr F(J)=1.C 
7Ï n^=1.0/nSOHT(U2) 

Hi! ar L= ]; ; 
30 A(I,J)=A([,J)»n2 

on 8 5 1 = 1,J 
St) i)( I ,.,n-un , j)-vL)2 
100 CONTINUE 

nn no j = i,N 
Oil 13^ ! = ],% 

__ = 0 
' D'L 170 K = J,M 

120 n?=D? + 4(i,%)*urj,K) 
130 A(I,J)=n2 

L\ i -  T U !< N 
FND 

Computer Output No. 15 (Continued) 
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XII. APPENDIX C - FORMULATION OP THE Q, MATRIX FOR THE 

LINEAR TIME VARYING SYSTEM 

For the l6 state-variable system, some of the elements of the 0 

matrix are time varying as shown in Table 2. The variable elements are 

defined as shown in Equation A1 through A6. 

cos Gt 

^ 1 - S, ̂  sin%]t 
(Al) 

D 

1 - cos^fit - S-, 2 sin Qt 
C ^ (A2) 

1 - 8̂ 2 sin̂ t 

S.Z = 0 (A3) 

S, sin Qt v/l - cos%t - sin^Qt 
= (A4) 

vx 
1 - Ŝ 2 sin2nt 

S-, sin Qt cos Qt 
C - Y = (A5) 

1 - sin^Qt 

%z " ̂1 - S^2 sin2Qt 

S, is a constant depending on the latitude and Q is the earth's rotational 

rate in rad./sec. The unit of time used is seconds. For a more detailed 

information on these elements, see the paper by Brown and Friest (8). 

According to Equation 7, fifteen derivatives must be taken to form 

the full Q, matrix for this sixteen state-variable system. Instead of 

forming the Q, matrix as shown in Equation 7, the C matrix was differenti

ated and substituted into the p matrices as shown by the set of equations 
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numbered A7. 

T = C 

mm * m 
P = AC + C 

rn2 rp T • T "T 
Pj = 

= Â Ĉ̂  + 3(Â )̂ Ĉ  +'6*̂  

P̂  = Â Ĉ̂  + 4(Â )̂ Ĉ  + 6(Â )̂ Ĉ + 4Â Ĉ  +"c"̂  . 

The number of dots above the symbols indicates how many times the matrix 

has been differentiated with respect to time. The coefficients of 

matrices are the binomial coefficients. 

To differentiate the C matrix, each element of the C matrix was 

differentiated as many times as required and the value substituted into 

the C matrix. 

Four parameters were chosen so that when they were differentiated 

with respect to time, the differentiated term was a constant times a 

product of the four parameters. The parameters chosen are sbn^m. in the 

Equations A8 through All. 

^ ^1 - co8%t - 8^2 sin nt 

X = cos nt (A9) 

y = sin Ot (ALO) 

z = ^ = (All) 

1 - sin^Qt 

The derivative with respect to time is given in Equations A12 through Al). 
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 ̂= [̂  - S,] xyw-:- (A12) 

y (A13) 
d(fit) • S, 

= S, X (AlU) 
d(nt) b 

dz _ _ 3 = S, xyz (A15) 
d(nt) 

The elements of the C matrix are given as functions of the four parameters 

in Equation Al6 tlirough A20. 

C = xz (AI6) 
1J,X 

= -wz (A17) 

= wyz (Al8) 

= xyz (A19) 

(A20) 

Differentiating Equation Al6 by the chain rule with respect to fit results 

in Equation A21. 

The first term of Equation A21 can be obtained by multiplying the 

1 - 1  2  
term by - x y and the second term by multiplying by xyz . ; 

set of multiplying terms were formed for the parameters as shown in 

Equations A22 through A25. 
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wM = - S^] w~^ xy 
b 

(A22) 

xM = -(•^) x~V 
^b 

(A23) 

yM = xy -1 (A24) 

zM = S. xyz 2 (A25) 

For each term two positions in memory are needed; one to keep track 

of the exponents and the other to carry the value of the term. After the 

initial value and exponent has been entered into the memory for a func

tion, a search is made for the first non zero exponent of the first term. 

When it is found, the exponents are added to the exponents of the multi

plier term and the value of the term is multiplied by the value of the 

multiplier value. The new pair is stored in another place in memory-

reserved for the derivative. The value-of each term is added to the 

memory position which contains the value of the derivative. 

Each time a new term is formed a search is made through all the other 

terms of the derivative to find another term with the same set of expo

nents. If another term is found, the two are combined to form one term. 

If the value of the new term is zero the term is eliminated completely. 

This procedure is followed because of the increasing number of terms with 

each differentiation. For example, if we start with a term with three 

parameters and assume that all terms after the first differentiation will 

contain all four terms, not combining the term would result in about 800 

million terms on the 15th differentiation. With the combination and 

elimination, the 15th differentiation may contain about 1000 terms. 
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The number of terms in the I'lth differentiation was counted by the 

computer. Without the combination and elimination of terms, an estimated 

200 million terms could result. With the combination and elimination of 

terms, the l4th differentiation had G k  terms for C , 511 terms for C , 
pX ' f i f  

512 terms for C , 6U terms for C , and 63 terms for C . The terms for 
vx' vy' vz 

the l4th differentiation were counted to insure that enough memory space 

was allotted in the computer program. 

The Fortran program is given in Computer Output Number l6. More 

details about this method can be obtained from the program. This pro

gram was inserted in the program given in Computer Output Nutnber l4 

replacing the part of the program which formed the C and Q, matrix. 
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C SET NUMBER UF SYSTEM OUTPUTS AND DERIVAT IVES TG Hi; TAKEN 

i\P = ,\-l 
NC1=K0+1 
r=NM*NDi 
NKC = y 

C SET ADniTIVt DERIVATIVE PARAMETERS PCWEKS 
ICA(1)=257*2 56 
IDS(11=2*256*256*256 
I DA( 2 )=256 
IDS(2 1=256*256 
I D A ( 3) =256:52 56 ' ' 
IDS(3)=256 
IDA(4 ) = 2 57*2 56+2 
I0S(4)=0 
CG 142 1=1,4 

142 IDA{ I ) = IDA( I )-IDS( I ) 
C SET FUNCTION PARAMETER PCWFRS 

IP(1) =((64*256+65)*256+64)*256+65 
' "IP(2) '^ = ((65*256+64)*256+64)*256 + 65 

IP(3) =((65*256+64)*256+65)*256+65 
IP(4) =((64*256+65)*256+65)*256+65 
IP(5) =((64*256+64)«256+64)*256+63 
ICU=5 
DC 3C0 ITGTAL=1,4 
kT=( IT0TAL-1)*PI6'"' 
ITEST = 1 _ _  
I T E j\ = 1 
ITI,VE = 4 +2*1 TOTAL 

"IF (ITIME-12) 147, 146 ,145 
145 ITiyE=IT1X5-12 
146 ' ITHST=I1ÉST+1 
C CHECK, IF ANY PARAMETERS ARE ZERO, ADD 10 XIN. TG TIME 
14 7 Fi\(5 ) = DSIi\(XT) 

IF (DABS(FN(3))-(1.00-16)) 108,108,107 
1C7 'FI\(2 )=DSURT( L-0D0-F,\(3)*Fi\(3) ) 

IF (CABS(FN(2))-(1.0D-16)) 108,108,155 
108 kT=kT + PI6/12.CU0 

I Tt,\ = 2 

Computer Output Ho. l6. Fortran program for formulation of the Q matrix 
for the linear time varying system 
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C INSERT VALUE CF PARA^ETtRS 
F\(j)=LlSIN(hT) 
F,\ ( 2 ) ̂DSÙKT ( I . ODO-Fi\ ( 3 ) - Fi\ ( 3 ) ) 

15b FN(3)=SM*FN(1) 
Fi\( I)-DSCRT(I,CCO-Fi\( 2 ) =^F.\ (2 )-F!\ ( 3 )-Fi\ ( 3 ) ) 
Fh(4) = 1.0D0/0SQKT( I - 0 CO - F i\ ( 3 ) * F i\ ( 3 ) ) 

C INSERT VALUt CF FUNCTIONS 
FKl) =FN(2)»FN(4: 
F I ( 2 )  =(-FN(l))*FN(4) 
FI(3) =F\(i)«FN(3)*Fh(4) 
FI(4) =F%(2)*FX(3)*FN(4) 
FI(5) -1.0DO/Fi\(4) 
CC 16 1=1,512 

16 CC([)=C.OCO 
DC 164 1 = 1,5 
IK=(3+I)/3 
IC=[-2*(IR-1I 

164 C!I,IR, IC)-FI( I ) 
C INSERT VALUE OF DERIVATIVE XuLI PLIERS 

CD(1)= (l.G00/SH-S0)»FN(2)*FN(3)/(FN(l)»Fa(l)) 
CD(2)= F!\(3)/(FM2)<(-SB) ) 
CD(3)= SG*F%(2)/FN(3) 
CD ( 4 )= SB*FN(2I «FN ( 3 ) *F,\ (4)*FN(4 ) 

12? CONTINUE 
C OUTPUT VALUE CF PARAMETERS AND DERIVATIVE MULTIPLIERS 
270 FCRVAT( ' I ' , T3t • VALUES OF THE PARAMETERS'} 

WRITE-(3,270) 
2C3 FORMAT (/T3,4('FN(',I2,')=',F12.9,' •)) 

WRITE(3 ,203) (J,FN(J),J=1,4) 
273 FORMAT (//T3,'VALUES CF THE DERIVATIVE MULTIPLIERS 
274 WRITE (3 ,273) ' 
2C5 FORMAT (/T3,4('C0(',I2,')=',F12.q,' •)! 
2 75 WRITE ^3,205) (J,CD(J),J = 1,4) 
C REPEAT THE FOLLOWING TO 117 FOR EACH FUNCTION 

CO 117 J-1,5 " 
C CLEAR AND INITIALIZE WORKING MEMORY 
106 DO 141 1 =  1 ,1726 ' 

VT{I )=0.000 
141 IPD( I )=C 

VT(1)=FI(J) 
IPD( i) = iP( J) "T • 

C SET INDEX VALUES AND COUNTERS 
IR={3 + J)/3 
IC = J—2 ̂ ( I R—1 _ 
KS=1 
KP=1 

Computer Output No. l6 (Continued) 
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c REPEAT THE ECLLCWiiXG TO 117 FOR EACH DERIVATIVE TO ri£ TAKEN 
DC 117 I=1,ND 

C  S E T  C C U N T E R S  S U  T H A T  W O R K I N G  X E K C R Y  C A N  B E  F I L L c C  F R L X  
C ALTERNATE Ei\OS FOR EACH SUCCESSIVE DERIVATIVE 

K S = K S * ( - 1 )  
I F  ( K S )  1 5 0 , 1 5 0 , 1 5 1  

150 K-172R 
L = KP 
GO TO 152 

151 K=1 
L=172q-KP 

152 L^=KP 
KP = C ^ '  

C REPEAT TO 116 FUR EACH TERM 
no 116 LA=1,LB 
IFXl-IPOd) 
CTX=VT(L> 

C REPEAT rC 103 FOR EACH PARAMETER 
CO 103 JA=1,4 
J 3 = .5 - J A 

C EXTRACT THE POWER OF THE PARAXETER 
IFX2-IFX1 
IFX1 = IFX 1/256 • 
IFX2=IFX2-IFXl*256-64 

C  C H E C K ,  I F  P O W E R  I S  Z E R O ,  G O  T O  N E X T  P A R A M E T E R  
I F  ( I F X 2 )  1 1 0 , 1 0 3 , 1 1 0  

C  C I F F E R E X T I A T E  W I T H  R E S P E C T  T O  P A R A M E T E R  B Y  A D D I N G  A D D I T I V E  
C DERIVATIVE PARAMETER POWERS TO PARAMETER PO/.ER OF TERM AND 
C BY XULITPLYING DERIVATIVE MULTIPLIER EY VALUE OF TERM A,\D 
C POWER OF PARAMETER 
110 IX1=IPD(L) + IDA(JB) 

C X = C T X * C D ( J H ) » I F X 2  
C CHECK, IF This IS.THE FIRST TERM OR THE LAST DERIVATIVE, 
C ELIMINATE THE FOLLOW INC CHECKS 

I F  ( K P )  1 0 2 , 2 1 0 , 1 0 2  
1 0 2  I F  ( N O - I )  1 6 2 , 1 6 2 , 1 0 1  _  .  
C  C H E C K ,  I F  N E w E S T  T E R M  H A S  S A M E  P A R A M E T E R ^ P C h E R S ' A S  A N Y  O T H E R  
C  TE R M ,  A D D  T H E  V A L U E S  O F  T H E  T 'A O  T E R M S  
I C I  L K = K - K S  

DO 181 LTT=1,KP 
IF (IXl-IPD(LK)) 181,182,181 

C CHECK, IF THE VALUE OF THE SUM OF THE T.-.O TERMS IS LESS THAN 
C THE THESHOLD, REDUCE TERM COUNTER BY ONt AND STORE^LAST 
C PREVIOUS TERM IN THAT POSITION 
182 ANRMX=(UABS(CX-VT( LK) ))*( l.OD-14 )* I ' 

T C X = C X + V T ( L K )  

Computer Output No. l6 (Continued) 
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• IF ( DAGS ( TCX )-AKR^:X ) 184 , 184, 1 6 j 
Ibi Vr(LK)-TCX 

GU 10 lo2 
164 KP^Kl-»-! 

K=K-KS 
IH'0(LK) = I^D(K) 
Vr(LX)=VT(K) 

GO TC 162 
IGi LK=LK-KS 
C STOKE VALUE AND PARAMETER PCkcR CF TERM I\ POSITION 
C ADO VALUE OF TERM TO VALUE CF DERIVATIVE CF FUNCTION 
210 IP!)(K)^IX1 

VT(X)=CX 
lb5 K-K + 'KS 

KP = K P+1 
162 C( I+I, IR,IC)=C( I+i ,IR,IC)+CX 
1C3 CONriNLE 
116 L=L+KS 
0 OUTPUT THE NUXBER OF TERNS IN THE NEXT TG ThE LAST 
0 DERIVATIVE, AND THE VALUE OF EACH DERIVATIVE 

IF ( I +  l-ND) 117,211,117 '  
lb3 FORMAT (/T3,'DERIV. NC.= ',I2,' FU:\C. KC. = ',I2,' TER'-
211 XRITE (3,153) I,J,KP 
117 CONTINUE 

'CO 216 [=l,hDl 
112 FORMAT (/T3,'DERIVATIVE NC.=',I2) 

ID=I-1 
WRITE (3,112) ID 
[)0 ;)16 J=1,2 ' " ' " ' 

216 WRITE (3,5) (C(I,J,K),K=1,3) 
C CLEAR Q MATRIX AND I\SERT'C MATRIX I^TC FIRST 6 CGLUXNS 

DO 140 1=1,1728 
140 ' VT(I) = C.CnC - , 

G(5,1)=1.GDC 
0(13,1)=1.0D0 "  
G(7,2)=1.000 
C(14,2) = l .  OCO "" ' 
C(15,3)=1.0D0 
C( 16 ,4) = 1.0D0 
0(4,5)=1.0DC 
C(6,6) = 1.CD0 " 
C(1,3 ) -C( 1 , I , 1 ) 

• G ( 2,3)=C(l,l,2) 
Q{1,41=0(1,2,1) 
C(2,4)=C(1,2,2) 
G(3,4)=C(1,2,3) 
DO 130 L=1,ND '  ' 
IF (L-1) 122,122,124 

Computer Output No. l6 (Continued) 
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C MULTIPLY THr; DEKlVATIVES BY ThE A K^TRIX 
1^4 ni; 126 L0 = 2 ,L 

DL 126 J = l,2 ' ' 
C U  i 2 H  1 = 1 , t  
X ( I ) = O . C O C  
C U 12 3 K — 1 y i\ 

1 2 8  X ( [ ) = X ( I ) + A K ( K , I ) * C { L O , J , K )  
CC 126 I=1,N 

126 C{LC,J,I )-X( I ) 
C yULTIPLY THE NEXT 6 C C U L Y N S  8Y THE A MATRIX 
122 rC] 131 J = l,NM 

I2=L»Ny +J 
I 1=I2-N% 
CG 131 1=1,% 
DC 131 K = 1,N 

1 3 1  C ( I , I 2 ) = K ( I , [ 2 ) + G ( K , I l ) * A y ( K , I )  
C TO ThE Q M A T R I X ,  ADD THE P R O D U C T  CF T H E  D E R I V A T I V E  Ai\C I T S  
C PROPER COEFFICIENT 
133 ÎC-1 

LX=^+1 
" DO 134 IX=2,L'X -

CX=FLCAT(IC) 
I l^L-MM +2 
CO 132 J=l,2 
II = 11+1 
DU 132 X=l,% 

1 3 2 '  '  Q ( K , I 1 ) = Q ( K , I 1 ) + ' C (  I X , J , K ) * C X  
I j 4  I C = ( [ C * ( L X - I X ) ) / ( I X - 1 )  
I JO CONTINUE 
2C2 C O N T I N U E  

Computer Output No. l6 (Continued) 
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